Chapter 3

L^p spaces

3.1 Banach and Hilbert spaces

Definition 3.1. Let X be a vector space (over \mathbb{C}).

- (i) We call a function $|| \cdot || : X \to [0, \infty)$ a norm if it satisfies
 - (a) (triangle inequality) $||x + y|| \le ||x|| + ||y||$;
 - (b) $||\lambda x|| = |\lambda| \cdot ||x||$ for any $\lambda \in \mathbb{C}$;
 - (c) ||x|| = 0 iff x = 0.

Note: if (a) and (b) hold but (c) is not imposed, then we call $|| \cdot ||$ a seminorm.

- (ii) X together with a norm $|| \cdot ||$ is called a **normed space**.
- (iii) X is called a **Banach space** if it's a normed space that is complete with respect to the norm: that is, if $\{x_j\}_{j=1}^{\infty}$ is a Cauchy sequence $(||x_n x_m|| \to 0 \text{ as } n, m \to \infty)$ then $||x_j x|| \to 0$ for some element $x \in X$.
- (iv) We call a function $\langle \cdot, \cdot \rangle : X \times X \to \mathbb{C}$ an inner product if it satisfies
 - (a) (conjugate symmetry) $\langle x, y \rangle = \overline{\langle y, x \rangle};$
 - (b) (linearity in the first argument) $\langle \alpha x + \beta y, z \rangle = \alpha \langle x, z \rangle + \beta \langle y, x \rangle$ for any $\alpha, \beta \in \mathbb{C}$;
 - (c) $\langle x, x \rangle \ge 0$ for all x and $\langle x, x \rangle = 0$ iff x = 0.

Note: it is not hard to show that $||x|| := \sqrt{\langle x, x \rangle}$ is then a norm.

- (v) X together with an inner product $\langle \cdot, \cdot \rangle$ is called an **inner product space** (or a pre-Hilbert space).
- (vi) X is called a **Hilbert space** if it's an inner product space that is complete with respect to the norm $||x|| := \sqrt{\langle x, x \rangle}$.

3.2 L^p spaces: definition

Definition 3.2. Let (X, \mathcal{M}, μ) be a measure space. In the following two definition we identify two functions if they are equal to each other μ -a.e..

(i) For $1 \le p < \infty$, we define the $L^p(\mu)$ space to be the normed space of (equivalence classes of) measurable functions on X such that

$$||f||_p := \left(\int_X |f|^p \, d\mu\right)^{1/p} < \infty$$

(ii) Define the $L^{\infty}(\mu)$ space to be the normed space of (equivalence classes of) measurable functions on X whose essential supremum $||f||_{\infty}$ (or ess sup |f(x)|) is finite:

$$||f||_{\infty} := \inf \left\{ a \ge 0 : \mu(\{x : |f(x)| > a\}) = 0 \right\} < \infty$$

Remarks 3.3. (a) That $|| \cdot ||_p$ is in fact a norm (that is, it satisfies the triangle inequality) follows from the Minkowski's inequality, see Section 3.3.

(b) $|| \cdot ||_p$ for p < 1 fails the triangle inequality, so L^p isn't a normed space for such p.

(c) In particular, $|f(x)| \leq ||f||_{\infty}$ for μ -a.e. x, and $||f||_{\infty}$ is the smallest constant with such property.

(d) If X is \mathbb{N} , and μ is a counting measure, then it is easy to see that each function in $L^p(\mu)$, $1 \leq p \leq \infty$, can be identified with the sequence $\{f_j\}_{j=1}^{\infty}$ (or $\{f_j\}_{j\in\mathbb{Z}}$, respectively) satisfying $\sum_j |f_j|^p < \infty$. This special case of $L^p(\mu)$ is then denoted $\ell^p(\mathbb{N})$. If instead of \mathbb{N} , we have any other set A with the counting measure μ , then we also use the notation $\ell^p(A)$ for $L^p(\mu)$.

(e) $\ell^{\infty}(\mathbb{N})$ is then just the space of all bounded sequences.

3.3 A bunch of inequalities

Definition 3.4. A function $\phi : (a, b) \to \mathbb{R}$ is called **convex** if

$$\phi((1-\lambda)x + \lambda x) \le (1-\lambda)\phi(x) + \lambda\phi(y)$$

holds for any $x, y \in (a, b)$ and any $\lambda \in [0, 1]$.

Remarks 3.5. (a) $a = -\infty$ and/or $b = +\infty$ are allowed.

(b) The condition (3.3.2) can be easily rephrased to

$$\frac{\phi(t) - \phi(x)}{t - x} \le \frac{\phi(y) - \phi(t)}{y - t}$$
(3.3.1)

for all a < x < t < y < b. This can be easily understood geometrically.

Theorem 3.6 (Jensen's Inequality). Let (X, \mathcal{M}, μ) be a measure space with $\mu(X) = 1$. Suppose ϕ is convex on (a, b) and let $f \in L^1(\mu)$ with $f(x) \in (a, b)$ for all $x \in X$. Then

$$\phi\left(\int_X f \, d\mu\right) \le \int_X \phi(f(x)) \, d\mu \tag{3.3.2}$$

Proof. Let $I = \int f \, d\mu$, a < I < b. Let $\beta = \sup_{a < x < I} \frac{\phi(I) - \phi(x)}{I - x}$. Then, see (3.3.1), $\beta \leq \frac{\phi(y) - \phi(I)}{y - I}$ for any I < y < b. Therefore $\phi(y) \geq \phi(I) + \beta(y - I)$ both for I < y < b as well as $a < y \leq I$ (geometrically this is easy to believe too). Since $f(x) \in (a, b)$, we get

$$\phi(f(x)) \ge \phi(I) + \beta(f(x) - I).$$

Then integrating with respect to μ , we get $\int \phi \circ f \, d\mu \ge \phi(I) + 0$.

Definition 3.7. $p, q \in [1, \infty]$ are called **conjugate exponents** if

$$\frac{1}{p} + \frac{1}{q} = 1.$$

Examples 3.8. p = q = 2 and p = 1, $q = \infty$ are the most important special cases.

Theorem 3.9 (Young's Inequality). Suppose p and q are conjugate exponents, $1 . Then for all <math>x, y \ge 0$:

$$xy \le \frac{x^p}{p} + \frac{y^q}{q}.$$

Proof. Jensen's inequality with $\phi(x) = e^x$, $X = \{x_1, x_2\}$, and $\mu(\{x_1\}) = 1/p$, $\mu(\{x_2\}) = 1/q$, $f(x_1) = p \log x$, $f(x_2) = q \log y$, gives us $xy \le \frac{x^p}{p} + \frac{y^q}{q}$.

Theorem 3.10 (Hölder Inequality). Suppose p and q are conjugate exponents, $1 \le p, q \le \infty$. If f and g are measurable, then

$$||fg||_1 \le ||f||_p \, ||g||_q \tag{3.3.3}$$

Remark 3.11. For p = q = 2 this is the **Schwarz inequality** (also, Cauchy–Bunyakovsky in some countries).

Proof. When one of p or q is equal to ∞ , the result is obvious. So assume 1 .

The result is also trivial if one of the norms are 0 or ∞ . Note that scalar multiplication preserves the inequality so we may normalize: $F := |f|/||f||_p$ and $G := |g|/||g||_q$.

Apply Young's inequality with F(x) and G(x) instead of x, y:

$$F(x)G(x) \le \frac{1}{p}F(x)^p + \frac{1}{q}G(x)^q$$

which holds for every x. Integrating, we get

$$\int FG \, d\mu \le \frac{1}{p} + \frac{1}{q} = 1.$$

Theorem 3.12 (Generalized Hölder's Inequality). Let $1 \le p, q, r \le \infty$ with

$$\frac{1}{p} + \frac{1}{q} = \frac{1}{r}.$$

Then

$$|fg||_r \le ||f||_p \, ||g||_q \tag{3.3.4}$$

Remark 3.13. This can be generalized even further, see [F, Ex.6.3.31].

Proof. Again, we can assume none of p, q, r are ∞ . Then let

$$\tilde{f} = |f|^r, \quad \tilde{g} = |g|^r,$$

and $\tilde{p} = \frac{p}{r}$, $\tilde{q} = \frac{q}{r}$. Then we get $\frac{1}{p} + \frac{1}{q} = 1$, and (3.3.4) becomes reduced to (3.3.3).

Theorem 3.14 (Minkowski's Inequality). Let $1 \le p \le \infty$. Then

$$||f + g||_p \le ||f||_p + ||g||_p$$

for any $f, g \in L^p(\mu)$.

Proof. Inequality for p = 1 and $p = \infty$ follows from the usual triangle inequality for \mathbb{C} .

For 1 , note that

$$|f+g|^{p} \le |f| \, |f+g|^{p-1} + |g| \, |f+g|^{p-1}$$

Then Hölder inequality gives

$$\int |f| |f + g|^{p-1} \le \left(\int |f|^p \right)^{1/p} \left(\int |f + g|^{(p-1)q} \right)^{1/q},$$
$$\int |g| |f + g|^{p-1} \le \left(\int |g|^p \right)^{1/p} \left(\int |f + g|^{(p-1)q} \right)^{1/q},$$

which, together with (p-1)q = p, imply

$$\int |f+g|^p \le (||f||_p + ||g||_p) \left(\int |f+g|^p\right)^{1/q}$$

Dividing both sides by $(\int |f+g|^p)^{1/q}$ (assuming it is non-zero) and using $1 - \frac{1}{q} = \frac{1}{p}$, we get, the desired inequality.

3.4 Completeness

Theorem 3.15. (i) For any $1 \le p \le \infty$, and any positive measure μ , $L^p(\mu)$ is a Banach space.

(ii) $L^{2}(\mu)$ is a Hilbert space with the inner product

$$\langle f,g \rangle := \int_X f(x)\overline{g(x)} \, d\mu(x).$$

Proof. By Minkowski inequality, $|| \cdot ||_p$ is a norm, so we just need to check completeness.

Let $1 \le p < \infty$ first. Suppose $||f_n - f_m||_p \to 0$ as $n, m \to \infty$. The idea of constructing the limiting function f(x) is to show that the series on the right-hand side of (3.4.1) converges if we choose n_j large enough (so that each term in the series is small).

Indeed, proceeding inductively we get $||f_{n_{j+1}} - f_{n_j}||_p < 2^{-j}$ for some indices $n_1 < n_2 < \dots$

Define $g_k = \sum_{j=1}^k |f_{n_{j+1}} - f_{n_j}|$ and $g(x) = \lim_{k \to \infty} g_k(x)$ (exists for all x by monotonicity). By Minkowski $||g_k||_p < 1$ for every k. Since $g_k^p \leq g_{k+1}^p$, we can use the Lebesgue Monotone Convergence theorem to conclude that $||g||_p = \lim_{k \to \infty} ||g_k||_p \leq 1$. Since $g^p \in L^1(\mu)$, this means that $g(x) < \infty$ for a.e. x. By the definition $g = \sum_{j=1}^\infty |f_{n_{j+1}} - f_{n_j}|$, i.e., the following series also converges (absolutely) for a.e. x:

$$f(x) := f_{n_1}(x) + \sum_{j=1}^{\infty} (f_{n_{j+1}} - f_{n_j})$$
(3.4.1)

(define f(x) = 0 on the null-set where the convergence fails). Note that this can also be rewritten as $f(x) = \lim_{j\to\infty} f_{n_j}(x)$ a.e.. Note that $|f| \le |f_{n_1}| + g$ is in L^p since both f_{n_1} and g are in L^p . We need to show that $||f - f_n||_p \to 0$.

Choose $\varepsilon > 0$ and find N such that $||f_n - f_m||_p < \varepsilon$ for all $n, m \ge N$. Then for $m \ge N$, by Fatou's lemma

$$||f - f_m||_p^p = \int \lim_{j \to \infty} |f_{n_j}(x) - f_m(x)|^p d\mu \le \liminf_{j \to \infty} \int |f_{n_j}(x) - f_m(x)|^p d\mu = \liminf_{j \to \infty} ||f_{n_j} - f_m||_p^p \le \varepsilon^p.$$

This shows that $||f - f_m||_p \to 0$ as $m \to \infty$.

Finally, consider the $p = \infty$ case. Let $\{f_j\}_{j=1}^{\infty}$ be a Cauchy sequence in $L^{\infty}(\mu)$: $||f_n - f_m||_{\infty} \to 0$ as $n, m \to \infty$. Note that for μ -a.e. x (union of countably many μ -null sets is a μ -null set), $|f_n(x) - f_m(x)| \le ||f_n - f_m||_{\infty}$ for all m, n. So $f(x) := \lim f_n(x)$ exists μ -a.e., and we define f = 0 for other x.

Let $\varepsilon_m := \sup_{n \ge m} ||f_n - f_m||_{\infty}$. Since $\varepsilon_m \to 0$ by the Cauchy property, we have $\varepsilon_N \le 1$ for some large enough N. Then for a.e. x, $|f(x) - f_N(x)| = \lim_{j\to\infty} |f_j(x) - f_N(x)| \le \lim_{j\to\infty} ||f_j - f_N||_{\infty} \le \varepsilon_N < 1$. So $f - f_N \in L^{\infty}(\mu)$, which implies $f = f + (f_N - f) \in L^{\infty}(\mu)$. The last inequality also shows that $||f - f_N||_{\infty} \to 0$ as $N \to \infty$.

3.5 Inclusions for L^p and ℓ^p spaces

Intuition. We want to understand the relationship between L^p spaces for varying p. The idea is that $t^2 \ge t$ (lower exponent is better for convergence) if $t \ge 1$, and $t^2 \le t$ (higher exponent is better for convergence) if $0 \le t \le 1$. We make this rigorous in Theorem 3.16.

Theorem 3.16. For any $1 \le p < q < r \le \infty$, $L^q \subseteq L^p + L^r$, that is any function in $L^q(\mu)$ is the sum of a function in $L^p(\mu)$ and a function in $L^r(\mu)$.

Proof. Let us split $f \in L^q(\mu)$ into two parts – where |f| > 1 and where $|f| \le 1$: f = g + h with $g = f \chi_{\{x:|f| > 1\}}$ and $h = f \chi_{\{x:|f| \le 1\}}$. Since $f \in L^q$, we also have $g, h \in L^q$. Now, $|g|^p \le |g|^q$, so $g \in L^p$, and $|h|^r \le |h|^q$, so $h \in L^r$ (if $r = \infty$, then $|h| \le 1$ clearly implies $||h||_{\infty} \le 1$).

Theorem 3.17. For any $1 \le p < q < r \le \infty$, $L^p \cap L^r \subseteq L^q$.

Proof. One can follow the same idea as before: f = g + h with $g = f \chi_{\{x:|f|>1\}}$ and $h = f \chi_{\{x:|f|\leq 1\}}$. Since $f \in L^p \cap L^r$, we also have $g, h \in L^p \cap L^r$. Now, as before $g \in L^r$ implies $g \in L^q$ (as in the previous proof, since $|g| \geq 1$, we can pass to the lower exponent), and $h \in L^p$ implies $h \in L^q$ (since $|h| \leq 1$, we can pass to the higher exponent). This means $f \in L^q$.

Alternatively, one can prove the inequality

$$|f||_{q} \le ||f||_{p}^{\lambda} ||f||_{r}^{1-\lambda}, \tag{3.5.1}$$

where $\lambda \in (0,1)$ is defined from $\frac{1}{q} = \frac{\lambda}{p} + \frac{1-\lambda}{r}$. This is a direct corollary of generalized Hölder's inequality if we take $|f|^{\lambda}$ and $|f|^{1-\lambda}$ instead of f and g, and $\frac{p}{\lambda}, \frac{r}{1-\lambda}, q$ instead of p, q, r, respectively, in (3.3.4).

Theorem 3.18. If $\mu(X) < \infty$ and $1 \le p < q \le \infty$, then $L^p(\mu) \supseteq L^q(\mu)$.

Remark 3.19. The inclusion fails if $\mu(X) = \infty$ as a simple counterexample $f(x) \equiv 1$ on $(\mathbb{R}, \mathcal{B}(\mathbb{R}), m)$ shows.

Proof. Note that $\mu(X) < \infty$ means that function 1 is in any L^p . So we only need to worry about functions f on the set $\{x : |f| > 1\}$ and not on $\{x : |f| \le 1\}$.

Indeed, let $f \in L^q$, and let as before f = g + h. Then h is in every L^r $(1 \le r \le \infty)$, while $g \in L^q$ implies $g \in L^p$ (we can go to lower exponent). Therefore $f \in L^p$.

Alternatively, one can prove that

$$||f||_p \le ||f||_q \,\mu(X)^{\frac{1}{p} - \frac{1}{q}}$$

which follows from Hölder's inequality with functions $|f|^p$ and 1 and exponents $\frac{q}{p}$ and $\frac{q}{q-p}$:

$$||f||_{p}^{p} = \int |f|^{p} \cdot 1 \, d\mu \leq ||\, |f|^{p} \, ||_{q/p} \, ||1||_{q/(q-p)} = ||f||_{q}^{p} \mu(X)^{(q-p)/q}.$$

Theorem 3.20. For any $1 \le p < q \le \infty$, we have $\ell^p(\mathbb{N}) \subset \ell^q(\mathbb{N})$.

Remark 3.21. One can take any set A instead of \mathbb{N} .

Proof. If $f \equiv \{f_j\}_{j=1}^{\infty} \in \ell^p$ then $\sum_{j=1}^{\infty} |f_j| < \infty$, so $f_j \to 0$, so eventually $|f_j| < 1$.

Decompose as above f = g + h where $g = f \chi_{\{x:|f|>1\}}$ and $h = f \chi_{\{x:|f|\leq 1\}}$. Then g is supported on finitely many points, so $g \in \ell^r$ for any r. While for h: $h \in \ell^p$ implies that $h \in \ell^q$ (we can go to higher exponent since $|h| \leq 1$).

Alternatively, one can prove that for sequences we have

 $||f||_q \le ||f||_p$

which follows by applying (3.5.1) with $r = \infty$ and combining it with $||f||_{\infty} \leq ||f||_{p}$.

3.6 Dense subspaces of L^p spaces

Intuition. Given a function in $L^{p}(\mu)$ space, it is natural to ask how well we can approximate it by a simpler class of functions, such as simple or continuous functions. We explore these questions here.

Theorem 3.22. Let (X, \mathcal{M}, μ) be a measure space.

Let S be the class of (complex-valued) simple measurable functions $\sum_{j=1}^{n} \alpha_j \chi_{E_j}$, where $n < \infty$, $\alpha_j \in \mathbb{C}$, $\mu(E_j) < \infty$.

Let \tilde{S} be the class of (complex-valued) simple measurable functions $\sum_{j=1}^{n} \alpha_j \chi_{E_j}$, where $n < \infty$, $\alpha_j \in \mathbb{C}$, but with $\mu(E_j)$ allowed to be infinite.

- (i) S is dense in $L^p(\mu)$ for any $1 \le p < \infty$.
- (ii) \tilde{S} is dense in $L^{\infty}(\mu)$.

Remark 3.23. In general (i) wouldn't work for $p = \infty$, as the counterexample $f \equiv 1$ on $L^{\infty}(\mathbb{R}, m)$ shows.

Proof. (i) Clearly, $S \subset L^p$. Now, given $f \in L^p \cap L^+$, approximate f from below by simple functions ϕ_n as usual (see the proof of Proposition 2.8). Then $0 \leq \phi_n \leq f$, $\phi_n \nearrow f$. Note that $\phi_n \leq f$, so $\phi_n \in L^p$, so $\mu(E_j) < \infty$ for any ϕ_n . Since $|f - \phi_n|^p \leq |f|^p$, we can use Dominated Convergence Theorem to conclude that $\lim ||f - \phi_n||_p = \lim (\int |f - \phi_n|^p d\mu)^{1/p} = 0$, in other words, f is in the closure of S. For complex f, we approximate Re f and Im f separately.

(ii) For $f \in L^{\infty}(\mu) \cap L^+$, first we choose a representative of the equivalence class of f that is bounded. Then we use again the approximation $\{\phi_n\}$ from the proof of Proposition 2.8. Clearly, $\phi_n \in \tilde{S}$ and $||\phi_n - f||_{\infty} \leq \frac{1}{2^n}$ for n large enough.

Theorem 3.24. Let (X, \mathcal{M}, μ) be a measure space with X locally compact and Hausdorff. Suppose μ is regular, Borel, σ -finite. Let $1 \leq p < \infty$.

Then $C_c(X)$ is dense in $L^p(\mu)$.

Remark 3.25. It is clear that for $p = \infty$ this fails in general. For example, if $X = \mathbb{R}^n$, $\mu = m^n$, then the completion of $C_c(\mathbb{R}^n)$ in the $|| \cdot ||_{\infty}$ -norm is not L^{∞} but $C_0(\mathbb{R}^n)$, the space of all continuous functions on \mathbb{R}^n which vanish at ∞ , that is, those f for which $\lim_{|x|\to\infty} f(x) = 0$. This can be generalized to more general setting than $X = \mathbb{R}^n$.

Proof. By the previous theorem, we just need to be able to $|| \cdot ||_p$ -approximate functions χ_E with $\mu(E) < \infty$ by $C_c(X)$ functions.

Given $\varepsilon > 0$, by regularity and σ -finiteness of μ (see Theorem 1.35 — we can choose compact rather than just closed by using inner regularity; this works even for σ -finite case as countable intersection of compacts is compact for Hausdorff spaces), we can find a compact set $K \subseteq E$ and an open set $U \supseteq E$ such that $\mu(U \setminus K) < \varepsilon$. By Urysohn's lemma applied to the closed sets K and U^c , we can find a function $f \in C_c(X)$ such that $\chi_K \leq f \leq \chi_U$. Then $||\chi_E - f||_p \leq \mu(U \setminus K)^{1/p} < \varepsilon^{1/p}$.

3.7 Linear functionals

Recall that in Section 2.24 we had discussed linear functionals on the space $C_c(X)$ of continuous compactly supported functions. Linear functionals can of course be defined over arbitrary vector spaces.

Definition 3.26. Let X be a vector space over \mathbb{C} .

- (i) We say that a map $\phi : X \to \mathbb{C}$ is a linear functional on X if $\phi(x+y) = \phi(x) + \phi(y)$ and $\phi(\alpha x) = \alpha \phi(x)$ for $\alpha \in \mathbb{C}$.
- (ii) The space of all linear functionals on X forms a vector space which is called the algebraic dual space of X.

Remark 3.27. If X is equipped with a partial order \leq that is compatible with the vector addition and scalar multiplication (in the natural way you'd expect), then we call a functional positive if $x \geq 0$ implies $\phi(x) \geq 0$. We encountered this in Section 2.24 in the special case when X was the (partially ordered) space of continuous compactly supported functions.

Definition 3.28. Now let X be a Banach space with norm $|| \cdot ||$.

- (i) We say that a linear functional ϕ is **bounded** (or **continuous**) if there is C > 0 such that $|\phi(x)| \leq C ||x||$ for all $x \in X$.
- (ii) The space of all bounded linear functionals on X forms a vector space which is called the **dual space** of X, denoted by X^* .

Remarks 3.29. (a) Some authors may call X^* the continuous dual space or topological dual space. We will just call it dual.

- (b) Clearly, X^* , the dual space of X, is a subspace of the algebraic dual space of X.
- (c) If X is a Banach space, then X^* is easily seen to be a normed space with the norm defined by

$$||\phi|| = \sup\{|\phi(x)| : x \in X, ||x|| \le 1\} = \sup\left\{\frac{|\phi(x)|}{||x||} : x \in X, x \ne 0\right\}.$$

In fact, it is not much work to show that X^* is complete, i.e., a Banach space.

(d) A rough way to state the Remark 2.76(c) (which is also referred to as a Riesz-Markov representation theorem) is to say that the dual $C_0(X)^*$ of $C_0(X)$ (space of continuous functions vanishing at infinity, the completion of $C_c(X)$) is the space of all (complex, in particular finite) regular Borel measures on X.

3.8 Duals of L^p

Intuition. Given $g \in L^q(\mu)$ $(1 \le q \le \infty)$, according to Hölder's inequality, the map $f \mapsto \int fg d\mu$ is a bounded linear functional on $L^p(\mu)$. Does every bounded linear functional on L^p arise in this way? The answer is yes for $1 \le p < \infty$ (at least if μ is σ -finite), but not for $p = \infty$.

Theorem 3.30. Suppose $1 \le p < \infty$ and μ is a σ -finite (positive) measure. Then for any bounded linear functional ϕ on $L^p(\mu)$ there is a unique $g \in L^q(\mu)$ (where $\frac{1}{p} + \frac{1}{q} = 1$) such that

$$\phi(f) = \int fg \, d\mu, \quad \text{for all } f \in L^p(\mu). \tag{3.8.1}$$

Moreover, $||\phi|| = ||g||_q$.

Remarks 3.31. (a) Morally, one can say that $(L^p)^* = L^q$ if $1 \le p < \infty$ and μ is σ -finite.

(b) The statement of the theorem is still correct without the σ -finiteness assumption provided that 1 .

- (c) In particular, $(L^p)^{**} = L^p$ for 1 . Spaces satisfying such condition are called reflexive.
- (d) The statement for $p = \infty$ fails. Indeed, $(L^{\infty})^*$ is much bigger than L^1 .

Proof. Uniqueness: if g and \tilde{g} both satisfy (3.8.1) then we can take $f = \chi_E$ for any measurable E with $\mu(E) < \infty$, giving $\int_E (g - \tilde{g}) d\mu = 0$. This implies $g - \tilde{g} = 0$ a.e. using σ -finiteness of μ .

We will suppose that $\mu(X) < \infty$ and leave the extension to the σ -finite case as an exercise ([F190]). Note that (3.8.1) for $f = \chi_E$ takes the form $\phi(\chi_E) = \int_E g \, d\mu$, which looks like a (complex) μ -absolutely continuous measure. This motivates us to define

$$\nu(E) = \phi(\chi_E), \quad \text{for any } E \in \mathcal{M}.$$

We want to show that $\nu(E) = \int_X \chi_E g \, d\mu = \int_E g \, d\mu$ for some $g \in L^q$. To do this, we will show: (1) ν is a (complex) measure; (2) ν is μ -a.c.; (3) equality (3.8.1) holds with $g := \frac{d\nu}{d\mu} \in L^1$; (4) g is in $L^q(\mu)$ and $||g||_q = ||\phi||$.

(1) Finite-additiveness of ν follows from linearity of ϕ and $\chi_{A\cup B} = \chi_A + \chi_B$ for disjoint sets A and B. For σ -additivity, let $E_{\infty} = \coprod_{j=1}^{\infty} A_j$. Define $E_n = \coprod_{j=1}^n A_j$. We need to show $\nu(E_{\infty})$ is equal to $\sum_{j=1}^{\infty} \nu(A_j) \equiv \lim \nu(E_n)$. We use continuity of ϕ to get $|\nu(E_{\infty}) - \nu(E_n)| = |\phi(\chi_{E_{\infty}} - \chi_{E_n})| \leq C ||\chi_{E_{\infty}} - \chi_{E_n}||_p$. Now note that $||\chi_{E_{\infty}} - \chi_{E_n}||_p = (\mu(E_{\infty} \setminus E_n))^{1/p} \to 0$ by continuity of μ . (recall that $p < \infty$).

(2) If $\mu(E) = 0$, then $\chi_E(x) = 0$ (μ -a.e.), so that $||\chi_E||_p = 0$, which implies $\nu(E) = \phi(\chi_E) = 0$ by linearity. Therefore $\nu \ll \mu$.

(3) By (2) and the Radon–Nikodym theorem, $d\nu = g d\mu$ for some $g \in L^1(\mu)$. In other words,

$$\int_E d\nu = \phi_{\chi_E} = \int_E g \, d\mu = \int_X \chi_E g \, d\mu.$$

By linearity of integral and of ϕ , we get (3.8.1) for any f that is a simple function.

We can further extend (3.8.1) to $f \in L^{\infty}$: indeed, by Theorem 3.22, we can find simple functions $s_n \to f$ in $|| \cdot ||_{\infty}$ -norm, which implies $s_n \to f$ in $|| \cdot ||_p$ -norm since $\mu(X) < \infty$, and then we can take limits of both sides in (3.8.1) with s_n . We will get (3.8.1) with $f \in L^p(\mu)$ later; having $f \in L^{\infty}(\mu)$ will be sufficient for now.

(4) Suppose first that $1 (so that <math>p \neq 1$, $q \neq \infty$). Then define $f = |g|^{q-1}\overline{\operatorname{sgn} g}$. Note that $|f|^p = |g|^q = fg$, so we expect from (3.8.1)

$$\int_X |g|^q \, d\mu = \int fg \, d\mu = \phi(f) \le ||\phi|| \, ||f||_p = ||\phi|| \, \left(\int_X |g|^q \, d\mu\right)^{1/p}$$

but we cannot plug f into (3.8.1) since we don't have $f \in L^{\infty}$. To fix this, let $f_n = |g|^{q-1} \overline{\operatorname{sgn} g} \chi_{E_n}$ where $E_n = \{x : |g(x)| \le n\}$. Then $|f_n|^p = |g|^q = fg$ on E_n , $f_n \in L^{\infty}$, and we get

$$\int_{E_n} |g|^q \, d\mu = \int_X f_n g \, d\mu = \phi(f_n) \le ||\phi|| \, ||f_n||_p = ||\phi|| \, \left(\int_{E_n} |g|^q \, d\mu\right)^{1/p} \, d\mu = \int_X f_n g \, d\mu = \phi(f_n) \le ||\phi|| \, ||f_n||_p = ||\phi|| \, \left(\int_{E_n} |g|^q \, d\mu\right)^{1/p} \, d\mu$$

which implies $(\int \chi_{E_n} |g|^q d\mu)^{1/q} \leq ||\phi||$. Applying Monotone Convergence Theorem, we get $g \in L^q$ and $||g||_q \leq ||\phi||$. This allows us to extend (3.8.1) to $f \in L^p(\mu)$ in the exact same way as before: for any $f \in L^p$, take simple functions $s_n \to f$ in $||\cdot||_p$ -norm, and then take limits of both sides of (3.8.1). Because $g \in L^q$, this works now. Finally, having (3.8.1) for all $f \in L^p$ allows us to use Hölder's inequality to conclude $||\phi|| \leq ||g||_q$, so we get $||\phi|| = ||g||_q$.

Now let p = 1, $q = \infty$. Take any $M < ||g||_{\infty}$, and let $A = \{x : |g(x)| > M\}$. Note that $0 < \mu(A) < \infty$, and we can take $f = \chi_A \overline{\operatorname{sgn} g}$. Since $f \in L^{\infty}$, (3.8.1) can be applied to get

$$M\mu(A) \le \int_A |g| \, d\mu = \int_X fg \, d\mu = \phi(f) \le ||\phi|| \, ||f||_1 = ||\phi|| \, \mu(A).$$

so we proved that $M < ||g||_{\infty}$ implies $M \leq ||\phi||$. This proves that $||g||_{\infty} \leq ||\phi||$ and in particular $g \in L^{\infty}$. This allows to extend (3.8.1) to all $f \in L^1$, and then use Hölder's inequality to conclude $||\phi|| \leq ||g||_{\infty}$, so that $||\phi|| = ||g||_q$.

3.9 Riesz Representation Theorem

Intuition. The duality theorem from the previous section states in particular that $(L^2)^* = L^2$, or more precisely, every bounded linear functional on $L^2(\mu)$ has the form

$$\phi(f) = \int fg \, d\mu, \quad \text{for all } f \in L^2(\mu) \tag{3.9.1}$$

for some $g \in L^2$. The last expression can also be written as $\phi(f) = \langle f, \bar{g} \rangle$. This is the special case $H = L^2(\mu)$ of the Riesz Representation Theorem which holds for an arbitrary Hilbert space H.

Theorem 3.32 (Riesz Representation Theorem). Let H be a Hilbert space. For any $g \in H$, define

$$\phi_g(f) = \langle f, g \rangle, \quad \text{for any } f \in H.$$
 (3.9.2)

Then $\phi_g \in H^*$, and conversely, every bounded linear functional on H has the form ϕ_g for a unique $g \in H$. *Proof.* [F187]

The uniqueness of g: if $\langle f, g \rangle = \langle f, \tilde{g} \rangle$ for all $f \in H$. then taking $f = g - \tilde{g}$, we get $||g - \tilde{g}|| = 0$, i.e., $g = \tilde{g}$.

Now for existence, if ϕ is a bounded linear functional on H, then either $\phi \equiv 0$ (in which case we take g = 0), or otherwise, let $K = \ker \phi = \{f \in H : \phi(f) = 0\}$. Note that in order for (3.9.2) to hold, we must have $g \in K^{\perp}$. Choose any $z \in K^{\perp}$ (K is a closed proper subspace in H, so $K^{\perp} \neq \{0\}$). Then for arbitrary $f, \phi(f)z - \phi(z)f$ is in K, so

$$0 = \langle \phi(f)z - \phi(z)f, z \rangle = \phi(f)||z||^2 - \phi(z) \langle f, z \rangle.$$

Rearranging we get

$$\phi(f) = \left\langle f, \frac{\overline{\phi(z)}z}{||z||^2} \right\rangle,$$

so we can take $q = \frac{\overline{\phi(z)}z}{||z||^2}$.

3.10 Linear operators: definition

Definition 3.33. Let X and Y be normed spaces.

- (i) We say that a function $T: X \to Y$ is a **bounded linear operator** if T is linear and there exists C > 0 such that $||T(x)||_Y \le C ||x||_X$ for all $x \in X$.
- (ii) The operator norm ||T|| of a bounded linear operator T is defined to be the smallest such constant C, or, in other words:

$$||T|| = \sup\{||T(x)||_Y : x \in X, ||x||_X \le 1\} = \sup\left\{\frac{||T(x)||_Y}{||x||_X} : x \in X, x \ne 0\right\}.$$

(iii) The space of all bounded linear operators from X to Y is denoted by L(X, Y).

Remarks 3.34. 1. In particular, $L(X, \mathbb{C}) = X^*$.

2. It can be shown that if Y is Banach, then L(X, Y) with the operator norm is also a Banach space.

3.11 Riesz–Thorin Interpolation Theorem

Theorem 3.35 (Riesz-Thorin Interpolation Theorem). Suppose (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) are two (σ -finite) measure spaces, and let $p_0, p_1, q_0, q_1 \in [1, \infty]$. For each 0 < t < 1, let p_t, q_t be defined through

$$\frac{1}{p_t} = \frac{1-t}{p_0} + \frac{t}{p_1}, \qquad \frac{1}{q_t} = \frac{1-t}{q_0} + \frac{t}{q_1}.$$

Let $T: L^{p_0}(\mu) + L^{p_1}(\mu) \to L^{q_0}(\nu) + L^{q_1}(\nu)$ be linear and satisfy

$$||T(f)||_{q_0} \le M_0 ||f||_{p_0},$$

$$||T(f)||_{q_1} \le M_1 ||f||_{p_1}.$$

Then for any $0 \le t \le 1$, T is a bounded linear operator from $L^{p_t}(\mu)$ to $L^{q_t}(\nu)$ and $||T(f)||_{q_t} \le M_0^{1-t} M_1^t ||f||_{p_t}$. *Proof.* This is mostly complex analysis and will be skipped, see [F200–202] if interested.