
Chapter 3

Lp spaces

3.1 Banach and Hilbert spaces

Definition 3.1. Let X be a vector space (over C).

(i) We call a function || · || : X → [0,∞) a norm if it satisfies

(a) (triangle inequality) ||x+ y|| ≤ ||x||+ ||y||;
(b) ||λx|| = |λ| · ||x|| for any λ ∈ C;

(c) ||x|| = 0 iff x = 0.

Note: if (a) and (b) hold but (c) is not imposed, then we call || · || a seminorm.

(ii) X together with a norm || · || is called a normed space.

(iii) X is called a Banach space if it’s a normed space that is complete with respect to the norm: that is,
if {xj}∞j=1 is a Cauchy sequence (||xn − xm|| → 0 as n,m → ∞) then ||xj − x|| → 0 for some element
x ∈ X.

(iv) We call a function 〈·, ·〉 : X ×X → C an inner product if it satisfies

(a) (conjugate symmetry) 〈x, y〉 = 〈y, x〉;
(b) (linearity in the first argument) 〈αx+ βy, z〉 = α 〈x, z〉+ β 〈y, x〉 for any α, β ∈ C;

(c) 〈x, x〉 ≥ 0 for all x and 〈x, x〉 = 0 iff x = 0.

Note: it is not hard to show that ||x|| :=
√
〈x, x〉 is then a norm.

(v) X together with an inner product 〈·, ·〉 is called an inner product space (or a pre-Hilbert space).

(vi) X is called a Hilbert space if it’s an inner product space that is complete with respect to the norm
||x|| :=

√
〈x, x〉.
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3.2 Lp spaces: definition

Definition 3.2. Let (X,M, µ) be a measure space. In the following two definition we identiy two functions
if they are equal to each other µ-a.e..

(i) For 1 ≤ p <∞, we define the Lp(µ) space to be the normed space of (equivalence classes of) measurable
functions on X such that

||f ||p :=

(∫
X

|f |p dµ
)1/p

<∞

(ii) Define the L∞(µ) space to be the normed space of (equivalence classes of) measurable functions on X
whose essential supremum ||f ||∞ (or ess sup |f(x)|) is finite:

||f ||∞ := inf {a ≥ 0 : µ({x : |f(x)| > a}) = 0} <∞

Remarks 3.3. (a) That || · ||p is in fact a norm (that is, it satisfies the triangle inequality) follows from the
Minkowski’s inequality, see Section 3.3.

(b) || · ||p for p < 1 fails the triangle inequality, so Lp isn’t a normed space for such p.
(c) In particular, |f(x)| ≤ ||f ||∞ for µ-a.e. x, and ||f ||∞ is the smallest constant with such property.
(d) If X is N, and µ is a counting measure, then it is easy to see that each function in Lp(µ), 1 ≤ p ≤ ∞,

can be identified with the sequence {fj}∞j=1 (or {fj}j∈Z, respectively) satisfying
∑
j |fj |p < ∞. This special

case of Lp(µ) is then denoted `p(N). If instead of N, we have any other set A with the counting measure µ,
then we also use the notation `p(A) for Lp(µ).

(e) `∞(N) is then just the space of all bounded sequences.

3.3 A bunch of inequalities

Definition 3.4. A function φ : (a, b)→ R is called convex if

φ((1− λ)x+ λx) ≤ (1− λ)φ(x) + λφ(y)

holds for any x, y ∈ (a, b) and any λ ∈ [0, 1].

Remarks 3.5. (a) a = −∞ and/or b = +∞ are allowed.
(b) The condition (3.3.2) can be easily rephrased to

φ(t)− φ(x)

t− x
≤ φ(y)− φ(t)

y − t
(3.3.1)

for all a < x < t < y < b. This can be easily understood geometrically.

Theorem 3.6 (Jensen’s Inequality). Let (X,M, µ) be a measure space with µ(X) = 1. Suppose φ is
convex on (a, b) and let f ∈ L1(µ) with f(x) ∈ (a, b) for all x ∈ X. Then

φ

(∫
X

f dµ

)
≤
∫
X

φ(f(x)) dµ (3.3.2)

Proof. Let I =
∫
f dµ, a < I < b. Let β = supa<x<I

φ(I)−φ(x)
I−x . Then, see (3.3.1), β ≤ φ(y)−φ(I)

y−I for any

I < y < b. Therefore φ(y) ≥ φ(I) + β(y − I) both for I < y < b as well as a < y ≤ I (geometrically this is
easy to believe too). Since f(x) ∈ (a, b), we get

φ(f(x)) ≥ φ(I) + β(f(x)− I).

Then integrating with respect to µ, we get
∫
φ ◦ f dµ ≥ φ(I) + 0.
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Definition 3.7. p, q ∈ [1,∞] are called conjugate exponents if

1

p
+

1

q
= 1.

Examples 3.8. p = q = 2 and p = 1, q =∞ are the most important special cases.

Theorem 3.9 (Young’s Inequality). Suppose p and q are conjugate exponents, 1 < p < ∞. Then for all
x, y ≥ 0:

xy ≤ xp

p
+
yq

q
.

Proof. Jensen’s inequality with φ(x) = ex, X = {x1, x2}, and µ({x1}) = 1/p, µ({x2}) = 1/q, f(x1) = p log x,

f(x2) = q log y, gives us xy ≤ xp

p + yq

q .

Theorem 3.10 (Hölder Inequality). Suppose p and q are conjugate exponents, 1 ≤ p, q ≤ ∞. If f and g
are measurable, then

||fg||1 ≤ ||f ||p ||g||q (3.3.3)

Remark 3.11. For p = q = 2 this is the Schwarz inequality (also, Cauchy–Bunyakovsky in some countries).

Proof. When one of p or q is equal to ∞, the result is obvious. So assume 1 < p <∞.
The result is also trivial if one of the norms are 0 or ∞. Note that scalar multiplication preserves the

inequality so we may normalize: F := |f |/||f ||p and G := |g|/||g||q.
Apply Young’s inequality with F (x) and G(x) instead of x, y:

F (x)G(x) ≤ 1

p
F (x)p +

1

q
G(x)q

which holds for every x. Integrating, we get∫
FGdµ ≤ 1

p
+

1

q
= 1.

Theorem 3.12 (Generalized Hölder’s Inequality). Let 1 ≤ p, q, r ≤ ∞ with

1

p
+

1

q
=

1

r
.

Then
||fg||r ≤ ||f ||p ||g||q (3.3.4)

Remark 3.13. This can be generalized even further, see [F, Ex.6.3.31].

Proof. Again, we can assume none of p, q, r are ∞. Then let

f̃ = |f |r, g̃ = |g|r,

and p̃ = p
r , q̃ = q

r . Then we get 1
p + 1

q = 1, and (3.3.4) becomes reduced to (3.3.3).

Theorem 3.14 (Minkowski’s Inequality). Let 1 ≤ p ≤ ∞. Then

||f + g||p ≤ ||f ||p + ||g||p

for any f, g ∈ Lp(µ).
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Proof. Inequality for p = 1 and p =∞ follows from the usual triangle inequality for C.
For 1 < p <∞, note that

|f + g|p ≤ |f | |f + g|p−1 + |g| |f + g|p−1.

Then Hölder inequality gives∫
|f | |f + g|p−1 ≤

(∫
|f |p

)1/p(∫
|f + g|(p−1)q

)1/q

,∫
|g| |f + g|p−1 ≤

(∫
|g|p
)1/p(∫

|f + g|(p−1)q

)1/q

,

which, together with (p− 1)q = p, imply∫
|f + g|p ≤ (||f ||p + ||g||p)

(∫
|f + g|p

)1/q

.

Dividing both sides by
(∫
|f + g|p

)1/q
(assuming it is non-zero) and using 1 − 1

q = 1
p , we get, the desired

inequality.

3.4 Completeness

Theorem 3.15. (i) For any 1 ≤ p ≤ ∞, and any positive measure µ, Lp(µ) is a Banach space.

(ii) L2(µ) is a Hilbert space with the inner product

〈f, g〉 :=

∫
X

f(x)g(x) dµ(x).

Proof. By Minkowski inequality, || · ||p is a norm, so we just need to check completeness.
Let 1 ≤ p <∞ first. Suppose ||fn−fm||p → 0 as n,m→∞. The idea of constructing the limiting function

f(x) is to show that the series on the right-hand side of (3.4.1) converges if we choose nj large enough (so
that each term in the series is small).

Indeed, proceeding inductively we get ||fnj+1
− fnj ||p < 2−j for some indices n1 < n2 < . . ..

Define gk =
∑k
j=1 |fnj+1

−fnj | and g(x) = limk→∞ gk(x) (exists for all x by monotonicity). By Minkowski

||gk||p < 1 for every k. Since gpk ≤ g
p
k+1, we can use the Lebesgue Monotone Convergence theorem to conclude

that ||g||p = lim ||gk||p ≤ 1. Since gp ∈ L1(µ), this means that g(x) < ∞ for a.e. x. By the definition
g =

∑∞
j=1 |fnj+1 − fnj |, i.e., the following series also converges (absolutely) for a.e. x:

f(x) := fn1(x) +

∞∑
j=1

(fnj+1 − fnj ) (3.4.1)

(define f(x) = 0 on the null-set where the convergence fails). Note that this can also be rewritten as
f(x) = limj→∞ fnj (x) a.e.. Note that |f | ≤ |fn1

| + g is in Lp since both fn1
and g are in Lp. We need to

show that ||f − fn||p → 0.
Choose ε > 0 and find N such that ||fn− fm||p < ε for all n,m ≥ N . Then for m ≥ N , by Fatou’s lemma

||f − fm||pp =

∫
lim
j→∞

|fnj (x)− fm(x)|pdµ ≤ lim inf
j→∞

∫
|fnj (x)− fm(x)|pdµ = lim inf

j→∞
||fnj − fm||pp ≤ εp.
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This shows that ||f − fm||p → 0 as m→∞.

Finally, consider the p = ∞ case. Let {fj}∞j=1 be a Cauchy sequence in L∞(µ): ||fn − fm||∞ → 0 as
n,m → ∞. Note that for µ-a.e. x (union of countably many µ-null sets is a µ-null set), |fn(x) − fm(x)| ≤
||fn − fm||∞ for all m,n. So f(x) := lim fn(x) exists µ-a.e., and we define f = 0 for other x.

Let εm := supn≥m ||fn − fm||∞. Since εm → 0 by the Cauchy property, we have εN ≤ 1 for some large
enough N . Then for a.e. x, |f(x) − fN (x)| = limj→∞ |fj(x) − fN (x)| ≤ limj→∞ ||fj − fN ||∞ ≤ εN < 1. So
f−fN ∈ L∞(µ), which implies f = f+(fN−f) ∈ L∞(µ). The last inequality also shows that ||f−fN ||∞ → 0
as N →∞.

3.5 Inclusions for Lp and `p spaces

Intuition. We want to understand the relationship between Lp spaces for varying p. The idea is that t2 ≥ t
(lower exponent is better for convergence) if t ≥ 1, and t2 ≤ t (higher exponent is better for convergence) if
0 ≤ t ≤ 1. We make this rigorous in Theorem 3.16.

Theorem 3.16. For any 1 ≤ p < q < r ≤ ∞, Lq ⊆ Lp + Lr, that is any function in Lq(µ) is the sum of a
function in Lp(µ) and a function in Lr(µ).

Proof. Let us split f ∈ Lq(µ) into two parts – where |f | > 1 and where |f | ≤ 1: f = g+h with g = f χ{x:|f |>1}
and h = f χ{x:|f |≤1}. Since f ∈ Lq, we also have g, h ∈ Lq. Now, |g|p ≤ |g|q, so g ∈ Lp, and |h|r ≤ |h|q, so
h ∈ Lr (if r =∞, then |h| ≤ 1 clearly implies ||h||∞ ≤ 1).

Theorem 3.17. For any 1 ≤ p < q < r ≤ ∞, Lp ∩ Lr ⊆ Lq.

Proof. One can follow the same idea as before: f = g + h with g = f χ{x:|f |>1} and h = f χ{x:|f |≤1}. Since
f ∈ Lp ∩ Lr, we also have g, h ∈ Lp ∩ Lr. Now, as before g ∈ Lr implies g ∈ Lq (as in the previous proof,
since |g| ≥ 1, we can pass to the lower exponent), and h ∈ Lp implies h ∈ Lq (since |h| ≤ 1, we can pass to
the higher exponent). This means f ∈ Lq.

Alternatively, one can prove the inequality

||f ||q ≤ ||f ||λp ||f ||1−λr , (3.5.1)

where λ ∈ (0, 1) is defined from 1
q = λ

p + 1−λ
r . This is a direct corollary of generalized Hölder’s inequality if

we take |f |λ and |f |1−λ instead of f and g, and p
λ ,

r
1−λ , q instead of p, q, r, respectively, in (3.3.4).

Theorem 3.18. If µ(X) <∞ and 1 ≤ p < q ≤ ∞, then Lp(µ) ⊇ Lq(µ).

Remark 3.19. The inclusion fails if µ(X) =∞ as a simple counterexample f(x) ≡ 1 on (R,B(R),m) shows.

Proof. Note that µ(X) <∞ means that function 1 is in any Lp. So we only need to worry about functions f
on the set {x : |f | > 1} and not on {x : |f | ≤ 1}.

Indeed, let f ∈ Lq, and let as before f = g + h. Then h is in every Lr (1 ≤ r ≤ ∞), while g ∈ Lq implies
g ∈ Lp (we can go to lower exponent). Therefore f ∈ Lp.

Alternatively, one can prove that

||f ||p ≤ ||f ||q µ(X)
1
p−

1
q .

which follows from Hölder’s inequality with functions |f |p and 1 and exponents q
p and q

q−p :

||f ||pp =

∫
|f |p · 1 dµ ≤ || |f |p ||q/p ||1||q/(q−p) = ||f ||pqµ(X)(q−p)/q.
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Theorem 3.20. For any 1 ≤ p < q ≤ ∞, we have `p(N) ⊂ `q(N).

Remark 3.21. One can take any set A instead of N.

Proof. If f ≡ {fj}∞j=1 ∈ `p then
∑∞
j=1 |fj | <∞, so fj → 0, so eventually |fj | < 1.

Decompose as above f = g+h where g = f χ{x:|f |>1} and h = f χ{x:|f |≤1}. Then g is supported on finitely
many points, so g ∈ `r for any r. While for h: h ∈ `p implies that h ∈ `q (we can go to higher exponent since
|h| ≤ 1).

Alternatively, one can prove that for sequences we have

||f ||q ≤ ||f ||p

which follows by applying (3.5.1) with r =∞ and combining it with ||f ||∞ ≤ ||f ||p.

3.6 Dense subspaces of Lp spaces

Intuition. Given a function in Lp(µ) space, it is natural to ask how well we can approximate it by a simpler
class of functions, such as simple or continuous functions. We explore these questions here.

Theorem 3.22. Let (X,M, µ) be a measure space.
Let S be the class of (complex-valued) simple measurable functions

∑n
j=1 αjχEj , where n < ∞, αj ∈ C,

µ(Ej) <∞.

Let S̃ be the class of (complex-valued) simple measurable functions
∑n
j=1 αjχEj , where n < ∞, αj ∈ C,

but with µ(Ej) allowed to be infinite.

(i) S is dense in Lp(µ) for any 1 ≤ p <∞.

(ii) S̃ is dense in L∞(µ).

Remark 3.23. In general (i) wouldn’t work for p =∞, as the counterexample f ≡ 1 on L∞(R,m) shows.

Proof. (i) Clearly, S ⊂ Lp. Now, given f ∈ Lp ∩ L+, approximate f from below by simple functions φn as
usual (see the proof of Proposition 2.8). Then 0 ≤ φn ≤ f , φn ↗ f . Note that φn ≤ f , so φn ∈ Lp, so
µ(Ej) < ∞ for any φn. Since |f − φn|p ≤ |f |p, we can use Dominated Convergence Theorem to conclude
that lim ||f − φn||p = lim(

∫
|f − φn|pdµ)1/p = 0, in other words, f is in the closure of S. For complex f , we

approximate Re f and Im f separately.
(ii) For f ∈ L∞(µ)∩L+, first we choose a representative of the equivalence class of f that is bounded. Then

we use again the approximation {φn} from the proof of Proposition 2.8. Clearly, φn ∈ S̃ and ||φn−f ||∞ ≤ 1
2n

for n large enough.

Theorem 3.24. Let (X,M, µ) be a measure space with X locally compact and Hausdorff. Suppose µ is
regular, Borel, σ-finite. Let 1 ≤ p <∞.

Then Cc(X) is dense in Lp(µ).

Remark 3.25. It is clear that for p = ∞ this fails in general. For example, if X = Rn, µ = mn, then the
completion of Cc(Rn) in the || · ||∞-norm is not L∞ but C0(Rn), the space of all continuous functions on Rn
which vanish at ∞, that is, those f for which lim|x|→∞ f(x) = 0. This can be generalized to more general
setting than X = Rn.
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Proof. By the previous theorem, we just need to be able to || · ||p-approximate functions χE with µ(E) <∞
by Cc(X) functions.

Given ε > 0, by regularity and σ-finiteness of µ (see Theorem 1.35 — we can choose compact rather than
just closed by using inner regularity; this works even for σ-finite case as countable intersection of compacts
is compact for Hausdorff spaces), we can find a compact set K ⊆ E and an open set U ⊇ E such that
µ(U \K) < ε. By Urysohn’s lemma applied to the closed sets K and U c, we can find a function f ∈ Cc(X)
such that χK ≤ f ≤ χU . Then ||χE − f ||p ≤ µ(U \K)1/p < ε1/p.

3.7 Linear functionals

Recall that in Section 2.24 we had discussed linear functionals on the space Cc(X) of continuous compactly
supported functions. Linear functionals can of course be defined over arbitrary vector spaces.

Definition 3.26. Let X be a vector space over C.

(i) We say that a map φ : X → C is a linear functional on X if φ(x+y) = φ(x)+φ(y) and φ(αx) = αφ(x)
for α ∈ C.

(ii) The space of all linear functionals on X forms a vector space which is called the algebraic dual space
of X.

Remark 3.27. If X is equipped with a partial order ≤ that is compatible with the vector addition and scalar
multiplication (in the natural way you’d expect), then we call a functional positive if x ≥ 0 implies φ(x) ≥ 0.
We encountered this in Section 2.24 in the special case when X was the (partially ordered) space of continuous
compactly supported functions.

Definition 3.28. Now let X be a Banach space with norm || · ||.

(i) We say that a linear functional φ is bounded (or continuous) if there is C > 0 such that |φ(x)| ≤ C ||x||
for all x ∈ X.

(ii) The space of all bounded linear functionals on X forms a vector space which is called the dual space
of X, denoted by X∗.

Remarks 3.29. (a) Some authors may call X∗ the continuous dual space or topological dual space. We will
just call it dual.

(b) Clearly, X∗, the dual space of X, is a subspace of the algebraic dual space of X.
(c) If X is a Banach space, then X∗ is easily seen to be a normed space with the norm defined by

||φ|| = sup{|φ(x)| : x ∈ X, ||x|| ≤ 1} = sup

{
|φ(x)|
||x||

: x ∈ X,x 6= 0

}
.

In fact, it is not much work to show that X∗ is complete, i.e., a Banach space.
(d) A rough way to state the Remark 2.76(c) (which is also referred to as a Riesz–Markov representation

theorem) is to say that the dual C0(X)∗ of C0(X) (space of continuous functions vanishing at infinity, the
completion of Cc(X)) is the space of all (complex, in particular finite) regular Borel measures on X.

35



3.8 Duals of Lp

Intuition. Given g ∈ Lq(µ) (1 ≤ q ≤ ∞), according to Hölder’s inequality, the map f 7→
∫
fg dµ is a bounded

linear functional on Lp(µ). Does every bounded linear functional on Lp arise in this way? The answer is yes
for 1 ≤ p <∞ (at least if µ is σ-finite), but not for p =∞.

Theorem 3.30. Suppose 1 ≤ p < ∞ and µ is a σ-finite (positive) measure. Then for any bounded linear
functional φ on Lp(µ) there is a unique g ∈ Lq(µ) (where 1

p + 1
q = 1) such that

φ(f) =

∫
fg dµ, for all f ∈ Lp(µ). (3.8.1)

Moreover, ||φ|| = ||g||q.

Remarks 3.31. (a) Morally, one can say that (Lp)∗ = Lq if 1 ≤ p <∞ and µ is σ-finite.
(b) The statement of the theorem is still correct without the σ-finiteness assumption provided that 1 <

p <∞.
(c) In particular, (Lp)∗∗ = Lp for 1 < p <∞. Spaces satisfying such condition are called reflexive.
(d) The statement for p =∞ fails. Indeed, (L∞)∗ is much bigger than L1.

Proof. Uniqueness: if g and g̃ both satisfy (3.8.1) then we can take f = χE for any measurable E with
µ(E) <∞, giving

∫
E

(g − g̃) dµ = 0. This implies g − g̃ = 0 a.e. using σ-finiteness of µ.

We will suppose that µ(X) <∞ and leave the extension to the σ-finite case as an exercise ([F190]). Note
that (3.8.1) for f = χE takes the form φ(χE) =

∫
E
g dµ, which looks like a (complex) µ-absolutely continuous

measure. This motivates us to define

ν(E) = φ(χE), for any E ∈M.

We want to show that ν(E) =
∫
X
χEg dµ =

∫
E
g dµ for some g ∈ Lq. To do this, we will show: (1) ν is

a (complex) measure; (2) ν is µ-a.c.; (3) equality (3.8.1) holds with g := dν
dµ ∈ L1; (4) g is in Lq(µ) and

||g||q = ||φ||.

(1) Finite-additiveness of ν follows from linearity of φ and χA∪B = χA + χB for disjoint sets A and
B. For σ-additivity, let E∞ =

∐∞
j=1Aj . Define En =

∐n
j=1Aj . We need to show ν(E∞) is equal to∑∞

j=1 ν(Aj) ≡ lim ν(En). We use continuity of φ to get |ν(E∞)−ν(En)| = |φ(χE∞−χEn)| ≤ C||χE∞−χEn ||p.
Now note that||χE∞ − χEn ||p = (µ(E∞ \ En))1/p → 0 by continuity of µ. (recall that p <∞).

(2) If µ(E) = 0, then χE(x) = 0 (µ-a.e.), so that ||χE ||p = 0, which implies ν(E) = φ(χE) = 0 by linearity.
Therefore ν � µ.

(3) By (2) and the Radon–Nikodym theorem, dν = g dµ for some g ∈ L1(µ). In other words,∫
E

dν = φχE =

∫
E

g dµ =

∫
X

χEg dµ.

By linearity of integral and of φ, we get (3.8.1) for any f that is a simple function.
We can further extend (3.8.1) to f ∈ L∞: indeed, by Theorem 3.22, we can find simple functions sn → f

in || · ||∞-norm, which implies sn → f in || · ||p-norm since µ(X) < ∞, and then we can take limits of both
sides in (3.8.1) with sn. We will get (3.8.1) with f ∈ Lp(µ) later; having f ∈ L∞(µ) will be sufficient for now.

(4) Suppose first that 1 < p < ∞ (so that p 6= 1, q 6= ∞). Then define f = |g|q−1sgn g. Note that
|f |p = |g|q = fg, so we expect from (3.8.1)∫

X

|g|q dµ =

∫
fg dµ = φ(f) ≤ ||φ|| ||f ||p = ||φ||

(∫
X

|g|q dµ
)1/p

,
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but we cannot plug f into (3.8.1) since we don’t have f ∈ L∞. To fix this, let fn = |g|q−1sgn gχEn where
En = {x : |g(x)| ≤ n}. Then |fn|p = |g|q = fg on En, fn ∈ L∞, and we get∫

En

|g|q dµ =

∫
X

fng dµ = φ(fn) ≤ ||φ|| ||fn||p = ||φ||
(∫

En

|g|q dµ
)1/p

,

which implies
(∫
χEn |g|q dµ

)1/q ≤ ||φ||. Applying Monotone Convergence Theorem, we get g ∈ Lq and
||g||q ≤ ||φ||. This allows us to extend (3.8.1) to f ∈ Lp(µ) in the exact same way as before: for any f ∈ Lp,
take simple functions sn → f in || · ||p-norm, and then take limits of both sides of (3.8.1). Because g ∈ Lq, this
works now. Finally, having (3.8.1) for all f ∈ Lp allows us to use Hölder’s inequality to conclude ||φ|| ≤ ||g||q,
so we get ||φ|| = ||g||q.

Now let p = 1, q = ∞. Take any M < ||g||∞, and let A = {x : |g(x)| > M}. Note that 0 < µ(A) < ∞,
and we can take f = χA sgn g. Since f ∈ L∞, (3.8.1) can be applied to get

Mµ(A) ≤
∫
A

|g| dµ =

∫
X

fg dµ = φ(f) ≤ ||φ|| ||f ||1 = ||φ||µ(A).

so we proved that M < ||g||∞ implies M ≤ ||φ||. This proves that ||g||∞ ≤ ||φ|| and in particular g ∈ L∞.
This allows to extend (3.8.1) to all f ∈ L1, and then use Hölder’s inequality to conclude ||φ|| ≤ ||g||∞, so that
||φ|| = ||g||q.

3.9 Riesz Representation Theorem

Intuition. The duality theorem from the previous section states in particular that (L2)∗ = L2, or more
precisely, every bounded linear functional on L2(µ) has the form

φ(f) =

∫
fg dµ, for all f ∈ L2(µ) (3.9.1)

for some g ∈ L2. The last expression can also be written as φ(f) = 〈f, ḡ〉. This is the special case H = L2(µ)
of the Riesz Representation Theorem which holds for an arbitrary Hilbert space H.

Theorem 3.32 (Riesz Representation Theorem). Let H be a Hilbert space. For any g ∈ H, define

φg(f) = 〈f, g〉 , for any f ∈ H. (3.9.2)

Then φg ∈ H∗, and conversely, every bounded linear functional on H has the form φg for a unique g ∈ H.

Proof. [F187]
The uniqueness of g: if 〈f, g〉 = 〈f, g̃〉 for all f ∈ H. then taking f = g− g̃, we get ||g− g̃|| = 0, i.e., g = g̃.
Now for existence, if φ is a bounded linear functional on H, then either φ ≡ 0 (in which case we take

g = 0), or otherwise, let K = kerφ = {f ∈ H : φ(f) = 0}. Note that in order for (3.9.2) to hold, we must
have g ∈ K⊥. Choose any z ∈ K⊥ (K is a closed proper subspace in H, so K⊥ 6= {0}). Then for arbitrary
f , φ(f)z − φ(z)f is in K, so

0 = 〈φ(f)z − φ(z)f, z〉 = φ(f)||z||2 − φ(z) 〈f, z〉 .

Rearranging we get

φ(f) =

〈
f,
φ(z)z

||z||2

〉
,

so we can take q = φ(z)z
||z||2 .
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3.10 Linear operators: definition

Definition 3.33. Let X and Y be normed spaces.

(i) We say that a function T : X → Y is a bounded linear operator if T is linear and there exists C > 0
such that ||T (x)||Y ≤ C ||x||X for all x ∈ X.

(ii) The operator norm ||T || of a bounded linear operator T is defined to be the smallest such constant C,
or, in other words:

||T || = sup{||T (x)||Y : x ∈ X, ||x||X ≤ 1} = sup

{
||T (x)||Y
||x||X

: x ∈ X,x 6= 0

}
.

(iii) The space of all bounded linear operators from X to Y is denoted by L(X,Y ).

Remarks 3.34. 1. In particular, L(X,C) = X∗.
2. It can be shown that if Y is Banach, then L(X,Y ) with the operator norm is also a Banach space.

3.11 Riesz–Thorin Interpolation Theorem

Theorem 3.35 (Riesz–Thorin Interpolation Theorem). Suppose (X,M, µ) and (Y,N , ν) are two (σ-finite)
measure spaces, and let p0, p1, q0, q1 ∈ [1,∞]. For each 0 < t < 1, let pt, qt be defined through

1

pt
=

1− t
p0

+
t

p1
,

1

qt
=

1− t
q0

+
t

q1
.

Let T : Lp0(µ) + Lp1(µ)→ Lq0(ν) + Lq1(ν) be linear and satisfy

||T (f)||q0 ≤M0||f ||p0 ,
||T (f)||q1 ≤M1||f ||p1 .

Then for any 0 ≤ t ≤ 1, T is a bounded linear operator from Lpt(µ) to Lqt(ν) and ||T (f)||qt ≤M1−t
0 M t

1||f ||pt .

Proof. This is mostly complex analysis and will be skipped, see [F200–202] if interested.
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