Chapter 3

L^{p} spaces

3.1 Banach and Hilbert spaces

Definition 3.1. Let X be a vector space (over \mathbb{C}).
(i) We call a function $\|\cdot\|: X \rightarrow[0, \infty)$ a norm if it satisfies
(a) (triangle inequality) $\|x+y\| \leq\|x\|+\|y\|$;
(b) $\|\lambda x\|=|\lambda| \cdot\|x\|$ for any $\lambda \in \mathbb{C}$;
(c) $\|x\|=0$ iff $x=0$.

Note: if (a) and (b) hold but (c) is not imposed, then we call $\|\cdot\|$ a seminorm.
(ii) X together with a norm $\|\cdot\|$ is called a normed space.
(iii) X is called a Banach space if it's a normed space that is complete with respect to the norm: that is, if $\left\{x_{j}\right\}_{j=1}^{\infty}$ is a Cauchy sequence $\left(\left\|x_{n}-x_{m}\right\| \rightarrow 0\right.$ as $\left.n, m \rightarrow \infty\right)$ then $\left\|x_{j}-x\right\| \rightarrow 0$ for some element $x \in X$.
(iv) We call a function $\langle\cdot, \cdot\rangle: X \times X \rightarrow \mathbb{C}$ an inner product if it satisfies
(a) (conjugate symmetry) $\langle x, y\rangle=\overline{\langle y, x\rangle}$;
(b) (linearity in the first argument) $\langle\alpha x+\beta y, z\rangle=\alpha\langle x, z\rangle+\beta\langle y, x\rangle$ for any $\alpha, \beta \in \mathbb{C}$;
(c) $\langle x, x\rangle \geq 0$ for all x and $\langle x, x\rangle=0$ iff $x=0$.

Note: it is not hard to show that $\|x\|:=\sqrt{\langle x, x\rangle}$ is then a norm.
(v) X together with an inner product $\langle\cdot, \cdot\rangle$ is called an inner product space (or a pre-Hilbert space).
(vi) X is called a Hilbert space if it's an inner product space that is complete with respect to the norm $\|x\|:=\sqrt{\langle x, x\rangle}$.

$3.2 \quad L^{p}$ spaces: definition

Definition 3.2. Let (X, \mathcal{M}, μ) be a measure space. In the following two definition we identiy two functions if they are equal to each other μ-a.e..
(i) For $1 \leq p<\infty$, we define the $L^{p}(\mu)$ space to be the normed space of (equivalence classes of) measurable functions on X such that

$$
\|f\|_{p}:=\left(\int_{X}|f|^{p} d \mu\right)^{1 / p}<\infty
$$

(ii) Define the $L^{\infty}(\mu)$ space to be the normed space of (equivalence classes of) measurable functions on X whose essential supremum $\|f\|_{\infty}$ (or ess sup $|f(x)|$) is finite:

$$
\|f\|_{\infty}:=\inf \{a \geq 0: \mu(\{x:|f(x)|>a\})=0\}<\infty
$$

Remarks 3.3. (a) That $\|\cdot\|_{p}$ is in fact a norm (that is, it satisfies the triangle inequality) follows from the Minkowski's inequality, see Section 3.3.
(b) $\|\cdot\|_{p}$ for $p<1$ fails the triangle inequality, so L^{p} isn't a normed space for such p.
(c) In particular, $|f(x)| \leq\|f\|_{\infty}$ for μ-a.e. x, and $\|f\|_{\infty}$ is the smallest constant with such property.
(d) If X is \mathbb{N}, and μ is a counting measure, then it is easy to see that each function in $L^{p}(\mu), 1 \leq p \leq \infty$, can be identified with the sequence $\left\{f_{j}\right\}_{j=1}^{\infty}$ (or $\left\{f_{j}\right\}_{j \in \mathbb{Z}}$, respectively) satisfying $\sum_{j}\left|f_{j}\right|^{p}<\infty$. This special case of $L^{p}(\mu)$ is then denoted $\ell^{p}(\mathbb{N})$. If instead of \mathbb{N}, we have any other set A with the counting measure μ, then we also use the notation $\ell^{p}(A)$ for $L^{p}(\mu)$.
(e) $\ell^{\infty}(\mathbb{N})$ is then just the space of all bounded sequences.

3.3 A bunch of inequalities

Definition 3.4. A function $\phi:(a, b) \rightarrow \mathbb{R}$ is called convex if

$$
\phi((1-\lambda) x+\lambda x) \leq(1-\lambda) \phi(x)+\lambda \phi(y)
$$

holds for any $x, y \in(a, b)$ and any $\lambda \in[0,1]$.
Remarks 3.5. (a) $a=-\infty$ and/or $b=+\infty$ are allowed.
(b) The condition (3.3.2) can be easily rephrased to

$$
\begin{equation*}
\frac{\phi(t)-\phi(x)}{t-x} \leq \frac{\phi(y)-\phi(t)}{y-t} \tag{3.3.1}
\end{equation*}
$$

for all $a<x<t<y<b$. This can be easily understood geometrically.
Theorem 3.6 (Jensen's Inequality). Let (X, \mathcal{M}, μ) be a measure space with $\mu(X)=1$. Suppose ϕ is convex on (a, b) and let $f \in L^{1}(\mu)$ with $f(x) \in(a, b)$ for all $x \in X$. Then

$$
\begin{equation*}
\phi\left(\int_{X} f d \mu\right) \leq \int_{X} \phi(f(x)) d \mu \tag{3.3.2}
\end{equation*}
$$

Proof. Let $I=\int f d \mu, a<I<b$. Let $\beta=\sup _{a<x<I} \frac{\phi(I)-\phi(x)}{I-x}$. Then, see (3.3.1), $\beta \leq \frac{\phi(y)-\phi(I)}{y-I}$ for any $I<y<b$. Therefore $\phi(y) \geq \phi(I)+\beta(y-I)$ both for $I<y<b$ as well as $a<y \leq I$ (geometrically this is easy to believe too). Since $f(x) \in(a, b)$, we get

$$
\phi(f(x)) \geq \phi(I)+\beta(f(x)-I)
$$

Then integrating with respect to μ, we get $\int \phi \circ f d \mu \geq \phi(I)+0$.

Definition 3.7. $p, q \in[1, \infty]$ are called conjugate exponents if

$$
\frac{1}{p}+\frac{1}{q}=1
$$

Examples 3.8. $p=q=2$ and $p=1, q=\infty$ are the most important special cases.
Theorem 3.9 (Young's Inequality). Suppose p and q are conjugate exponents, $1<p<\infty$. Then for all $x, y \geq 0$:

$$
x y \leq \frac{x^{p}}{p}+\frac{y^{q}}{q} .
$$

Proof. Jensen's inequality with $\phi(x)=e^{x}, X=\left\{x_{1}, x_{2}\right\}$, and $\mu\left(\left\{x_{1}\right\}\right)=1 / p, \mu\left(\left\{x_{2}\right\}\right)=1 / q, f\left(x_{1}\right)=p \log x$, $f\left(x_{2}\right)=q \log y$, gives us $x y \leq \frac{x^{p}}{p}+\frac{y^{q}}{q}$.

Theorem 3.10 (Hölder Inequality). Suppose p and q are conjugate exponents, $1 \leq p, q \leq \infty$. If f and g are measurable, then

$$
\begin{equation*}
\|f g\|_{1} \leq\|f\|_{p}\|g\|_{q} \tag{3.3.3}
\end{equation*}
$$

Remark 3.11. For $p=q=2$ this is the Schwarz inequality (also, Cauchy-Bunyakovsky in some countries).
Proof. When one of p or q is equal to ∞, the result is obvious. So assume $1<p<\infty$.
The result is also trivial if one of the norms are 0 or ∞. Note that scalar multiplication preserves the inequality so we may normalize: $F:=|f| / \|\left. f\right|_{p}$ and $G:=|g| /\|g\|_{q}$.

Apply Young's inequality with $F(x)$ and $G(x)$ instead of x, y :

$$
F(x) G(x) \leq \frac{1}{p} F(x)^{p}+\frac{1}{q} G(x)^{q}
$$

which holds for every x. Integrating, we get

$$
\int F G d \mu \leq \frac{1}{p}+\frac{1}{q}=1 .
$$

Theorem 3.12 (Generalized Hölder's Inequality). Let $1 \leq p, q, r \leq \infty$ with

$$
\frac{1}{p}+\frac{1}{q}=\frac{1}{r}
$$

Then

$$
\begin{equation*}
\|f g\|_{r} \leq\|f\|_{p}\|g\|_{q} \tag{3.3.4}
\end{equation*}
$$

Remark 3.13. This can be generalized even further, see [F, Ex.6.3.31].
Proof. Again, we can assume none of p, q, r are ∞. Then let

$$
\tilde{f}=|f|^{r}, \quad \tilde{g}=|g|^{r},
$$

and $\tilde{p}=\frac{p}{r}, \tilde{q}=\frac{q}{r}$. Then we get $\frac{1}{p}+\frac{1}{q}=1$, and (3.3.4) becomes reduced to (3.3.3).
Theorem 3.14 (Minkowski's Inequality). Let $1 \leq p \leq \infty$. Then

$$
\|f+g\|_{p} \leq\|f\|_{p}+\|g\|_{p}
$$

for any $f, g \in L^{p}(\mu)$.

Proof. Inequality for $p=1$ and $p=\infty$ follows from the usual triangle inequality for \mathbb{C}.
For $1<p<\infty$, note that

$$
|f+g|^{p} \leq|f||f+g|^{p-1}+|g||f+g|^{p-1}
$$

Then Hölder inequality gives

$$
\begin{aligned}
& \int|f||f+g|^{p-1} \leq\left(\int|f|^{p}\right)^{1 / p}\left(\int|f+g|^{(p-1) q}\right)^{1 / q} \\
& \int|g||f+g|^{p-1} \leq\left(\int|g|^{p}\right)^{1 / p}\left(\int|f+g|^{(p-1) q}\right)^{1 / q}
\end{aligned}
$$

which, together with $(p-1) q=p$, imply

$$
\int|f+g|^{p} \leq\left(\|f\|_{p}+\|g\|_{p}\right)\left(\int|f+g|^{p}\right)^{1 / q}
$$

Dividing both sides by $\left(\int|f+g|^{p}\right)^{1 / q}$ (assuming it is non-zero) and using $1-\frac{1}{q}=\frac{1}{p}$, we get, the desired inequality.

3.4 Completeness

Theorem 3.15. (i) For any $1 \leq p \leq \infty$, and any positive measure $\mu, L^{p}(\mu)$ is a Banach space.
(ii) $L^{2}(\mu)$ is a Hilbert space with the inner product

$$
\langle f, g\rangle:=\int_{X} f(x) \overline{g(x)} d \mu(x)
$$

Proof. By Minkowski inequality, $\|\cdot\|_{p}$ is a norm, so we just need to check completeness.
Let $1 \leq p<\infty$ first. Suppose $\left\|f_{n}-f_{m}\right\|_{p} \rightarrow 0$ as $n, m \rightarrow \infty$. The idea of constructing the limiting function $f(x)$ is to show that the series on the right-hand side of (3.4.1) converges if we choose n_{j} large enough (so that each term in the series is small).

Indeed, proceeding inductively we get $\left\|f_{n_{j+1}}-f_{n_{j}}\right\|_{p}<2^{-j}$ for some indices $n_{1}<n_{2}<\ldots$.
Define $g_{k}=\sum_{j=1}^{k}\left|f_{n_{j+1}}-f_{n_{j}}\right|$ and $g(x)=\lim _{k \rightarrow \infty} g_{k}(x)$ (exists for all x by monotonicity). By Minkowski $\left\|g_{k}\right\|_{p}<1$ for every k. Since $g_{k}^{p} \leq g_{k+1}^{p}$, we can use the Lebesgue Monotone Convergence theorem to conclude that $\|g\|_{p}=\lim \left\|g_{k}\right\|_{p} \leq 1$. Since $g^{p} \in L^{1}(\mu)$, this means that $g(x)<\infty$ for a.e. x. By the definition $g=\sum_{j=1}^{\infty}\left|f_{n_{j+1}}-f_{n_{j}}\right|$, i.e., the following series also converges (absolutely) for a.e. x :

$$
\begin{equation*}
f(x):=f_{n_{1}}(x)+\sum_{j=1}^{\infty}\left(f_{n_{j+1}}-f_{n_{j}}\right) \tag{3.4.1}
\end{equation*}
$$

(define $f(x)=0$ on the null-set where the convergence fails). Note that this can also be rewritten as $f(x)=\lim _{j \rightarrow \infty} f_{n_{j}}(x)$ a.e.. Note that $|f| \leq\left|f_{n_{1}}\right|+g$ is in L^{p} since both $f_{n_{1}}$ and g are in L^{p}. We need to show that $\left\|f-f_{n}\right\|_{p} \rightarrow 0$.

Choose $\varepsilon>0$ and find N such that $\left\|f_{n}-f_{m}\right\|_{p}<\varepsilon$ for all $n, m \geq N$. Then for $m \geq N$, by Fatou's lemma

$$
\left\|f-f_{m}\right\|_{p}^{p}=\int \lim _{j \rightarrow \infty}\left|f_{n_{j}}(x)-f_{m}(x)\right|^{p} d \mu \leq \liminf _{j \rightarrow \infty} \int\left|f_{n_{j}}(x)-f_{m}(x)\right|^{p} d \mu=\liminf _{j \rightarrow \infty}\left\|f_{n_{j}}-f_{m}\right\|_{p}^{p} \leq \varepsilon^{p}
$$

This shows that $\left\|f-f_{m}\right\|_{p} \rightarrow 0$ as $m \rightarrow \infty$.
Finally, consider the $p=\infty$ case. Let $\left\{f_{j}\right\}_{j=1}^{\infty}$ be a Cauchy sequence in $L^{\infty}(\mu):\left\|f_{n}-f_{m}\right\|_{\infty} \rightarrow 0$ as $n, m \rightarrow \infty$. Note that for μ-a.e. x (union of countably many μ-null sets is a μ-null set), $\left|f_{n}(x)-f_{m}(x)\right| \leq$ $\left\|f_{n}-f_{m}\right\|_{\infty}$ for all m, n. So $f(x):=\lim f_{n}(x)$ exists μ-a.e., and we define $f=0$ for other x.

Let $\varepsilon_{m}:=\sup _{n \geq m}\left\|f_{n}-f_{m}\right\|_{\infty}$. Since $\varepsilon_{m} \rightarrow 0$ by the Cauchy property, we have $\varepsilon_{N} \leq 1$ for some large enough N. Then for a.e. $x,\left|f(x)-f_{N}(x)\right|=\lim _{j \rightarrow \infty}\left|f_{j}(x)-f_{N}(x)\right| \leq \lim _{j \rightarrow \infty}\left\|f_{j}-f_{N}\right\|_{\infty} \leq \varepsilon_{N}<1$. So $f-f_{N} \in L^{\infty}(\mu)$, which implies $f=f+\left(f_{N}-f\right) \in L^{\infty}(\mu)$. The last inequality also shows that $\left\|f-f_{N}\right\|_{\infty} \rightarrow 0$ as $N \rightarrow \infty$.

3.5 Inclusions for L^{p} and ℓ^{p} spaces

Intuition. We want to understand the relationship between L^{p} spaces for varying p. The idea is that $t^{2} \geq t$ (lower exponent is better for convergence) if $t \geq 1$, and $t^{2} \leq t$ (higher exponent is better for convergence) if $0 \leq t \leq 1$. We make this rigorous in Theorem 3.16.

Theorem 3.16. For any $1 \leq p<q<r \leq \infty, L^{q} \subseteq L^{p}+L^{r}$, that is any function in $L^{q}(\mu)$ is the sum of a function in $L^{p}(\mu)$ and a function in $L^{r}(\mu)$.
Proof. Let us split $f \in L^{q}(\mu)$ into two parts - where $|f|>1$ and where $|f| \leq 1: f=g+h$ with $g=f \chi_{\{x:|f|>1\}}$ and $h=f \chi_{\{x:|f| \leq 1\}}$. Since $f \in L^{q}$, we also have $g, h \in L^{q}$. Now, $|g|^{p} \leq|g|^{q}$, so $g \in L^{p}$, and $|h|^{r} \leq|h|^{q}$, so $h \in L^{r}$ (if $r=\infty$, then $|h| \leq 1$ clearly implies $\|h\|_{\infty} \leq 1$).

Theorem 3.17. For any $1 \leq p<q<r \leq \infty, L^{p} \cap L^{r} \subseteq L^{q}$.
Proof. One can follow the same idea as before: $f=g+h$ with $g=f \chi_{\{x:|f|>1\}}$ and $h=f \chi_{\{x:|f| \leq 1\}}$. Since $f \in L^{p} \cap L^{r}$, we also have $g, h \in L^{p} \cap L^{r}$. Now, as before $g \in L^{r}$ implies $g \in L^{q}$ (as in the previous proof, since $|g| \geq 1$, we can pass to the lower exponent), and $h \in L^{p}$ implies $h \in L^{q}$ (since $|h| \leq 1$, we can pass to the higher exponent). This means $f \in L^{q}$.

Alternatively, one can prove the inequality

$$
\begin{equation*}
\|f\|_{q} \leq\|f\|_{p}^{\lambda}\|f\|_{r}^{1-\lambda} \tag{3.5.1}
\end{equation*}
$$

where $\lambda \in(0,1)$ is defined from $\frac{1}{q}=\frac{\lambda}{p}+\frac{1-\lambda}{r}$. This is a direct corollary of generalized Hölder's inequality if we take $|f|^{\lambda}$ and $|f|^{1-\lambda}$ instead of f and g, and $\frac{p}{\lambda} \frac{r}{1-\lambda}, q$ instead of p, q, r, respectively, in (3.3.4).
Theorem 3.18. If $\mu(X)<\infty$ and $1 \leq p<q \leq \infty$, then $L^{p}(\mu) \supseteq L^{q}(\mu)$.
Remark 3.19. The inclusion fails if $\mu(X)=\infty$ as a simple counterexample $f(x) \equiv 1$ on $(\mathbb{R}, \mathcal{B}(\mathbb{R}), m)$ shows.
Proof. Note that $\mu(X)<\infty$ means that function 1 is in any L^{p}. So we only need to worry about functions f on the set $\{x:|f|>1\}$ and not on $\{x:|f| \leq 1\}$.

Indeed, let $f \in L^{q}$, and let as before $f=g+h$. Then h is in every $L^{r}(1 \leq r \leq \infty)$, while $g \in L^{q}$ implies $g \in L^{p}$ (we can go to lower exponent). Therefore $f \in L^{p}$.

Alternatively, one can prove that

$$
\|f\|_{p} \leq\|f\|_{q} \mu(X)^{\frac{1}{p}-\frac{1}{q}}
$$

which follows from Hölder's inequality with functions $|f|^{p}$ and 1 and exponents $\frac{q}{p}$ and $\frac{q}{q-p}$:

$$
\|f\|_{p}^{p}=\int|f|^{p} \cdot 1 d \mu \leq\left\||f|^{p}\right\|_{q / p}\|1\|_{q /(q-p)}=\|f\|_{q}^{p} \mu(X)^{(q-p) / q}
$$

Theorem 3.20. For any $1 \leq p<q \leq \infty$, we have $\ell^{p}(\mathbb{N}) \subset \ell^{q}(\mathbb{N})$.
Remark 3.21. One can take any set A instead of \mathbb{N}.
Proof. If $f \equiv\left\{f_{j}\right\}_{j=1}^{\infty} \in \ell^{p}$ then $\sum_{j=1}^{\infty}\left|f_{j}\right|<\infty$, so $f_{j} \rightarrow 0$, so eventually $\left|f_{j}\right|<1$.
Decompose as above $f=g+h$ where $g=f \chi_{\{x:|f|>1\}}$ and $h=f \chi_{\{x:|f| \leq 1\}}$. Then g is supported on finitely many points, so $g \in \ell^{r}$ for any r. While for $h: h \in \ell^{p}$ implies that $h \in \ell^{q}$ (we can go to higher exponent since $|h| \leq 1)$.

Alternatively, one can prove that for sequences we have

$$
\|f\|_{q} \leq\|f\|_{p}
$$

which follows by applying (3.5.1) with $r=\infty$ and combining it with $\|f\|_{\infty} \leq\|f\|_{p}$.

3.6 Dense subspaces of L^{p} spaces

Intuition. Given a function in $L^{p}(\mu)$ space, it is natural to ask how well we can approximate it by a simpler class of functions, such as simple or continuous functions. We explore these questions here.

Theorem 3.22. Let (X, \mathcal{M}, μ) be a measure space.
Let S be the class of (complex-valued) simple measurable functions $\sum_{j=1}^{n} \alpha_{j} \chi_{E_{j}}$, where $n<\infty, \alpha_{j} \in \mathbb{C}$, $\mu\left(E_{j}\right)<\infty$.

Let \tilde{S} be the class of (complex-valued) simple measurable functions $\sum_{j=1}^{n} \alpha_{j} \chi_{E_{j}}$, where $n<\infty, \alpha_{j} \in \mathbb{C}$, but with $\mu\left(E_{j}\right)$ allowed to be infinite.
(i) S is dense in $L^{p}(\mu)$ for any $1 \leq p<\infty$.
(ii) \tilde{S} is dense in $L^{\infty}(\mu)$.

Remark 3.23. In general (i) wouldn't work for $p=\infty$, as the counterexample $f \equiv 1$ on $L^{\infty}(\mathbb{R}, m)$ shows.
Proof. (i) Clearly, $S \subset L^{p}$. Now, given $f \in L^{p} \cap L^{+}$, approximate f from below by simple functions ϕ_{n} as usual (see the proof of Proposition 2.8). Then $0 \leq \phi_{n} \leq f, \phi_{n} \nearrow f$. Note that $\phi_{n} \leq f$, so $\phi_{n} \in L^{p}$, so $\mu\left(E_{j}\right)<\infty$ for any ϕ_{n}. Since $\left|f-\phi_{n}\right|^{p} \leq|f|^{p}$, we can use Dominated Convergence Theorem to conclude that $\lim \left\|f-\phi_{n}\right\|_{p}=\lim \left(\int\left|f-\phi_{n}\right|^{p} d \mu\right)^{1 / p}=0$, in other words, f is in the closure of S. For complex f, we approximate $\operatorname{Re} f$ and $\operatorname{Im} f$ separately.
(ii) For $f \in L^{\infty}(\mu) \cap L^{+}$, first we choose a representative of the equivalence class of f that is bounded. Then we use again the approximation $\left\{\phi_{n}\right\}$ from the proof of Proposition 2.8. Clearly, $\phi_{n} \in \tilde{S}$ and $\left\|\phi_{n}-f\right\|_{\infty} \leq \frac{1}{2^{n}}$ for n large enough.

Theorem 3.24. Let (X, \mathcal{M}, μ) be a measure space with X locally compact and Hausdorff. Suppose μ is regular, Borel, σ-finite. Let $1 \leq p<\infty$.

Then $C_{c}(X)$ is dense in $L^{p}(\mu)$.
Remark 3.25. It is clear that for $p=\infty$ this fails in general. For example, if $X=\mathbb{R}^{n}, \mu=m^{n}$, then the completion of $C_{c}\left(\mathbb{R}^{n}\right)$ in the $\|\cdot\|_{\infty}$-norm is not L^{∞} but $C_{0}\left(\mathbb{R}^{n}\right)$, the space of all continuous functions on \mathbb{R}^{n} which vanish at ∞, that is, those f for which $\lim _{|x| \rightarrow \infty} f(x)=0$. This can be generalized to more general setting than $X=\mathbb{R}^{n}$.

Proof. By the previous theorem, we just need to be able to $\|\cdot\|_{p}$-approximate functions χ_{E} with $\mu(E)<\infty$ by $C_{c}(X)$ functions.

Given $\varepsilon>0$, by regularity and σ-finiteness of μ (see Theorem 1.35 - we can choose compact rather than just closed by using inner regularity; this works even for σ-finite case as countable intersection of compacts is compact for Hausdorff spaces), we can find a compact set $K \subseteq E$ and an open set $U \supseteq E$ such that $\mu(U \backslash K)<\varepsilon$. By Urysohn's lemma applied to the closed sets K and U^{c}, we can find a function $f \in C_{c}(X)$ such that $\chi_{K} \leq f \leq \chi_{U}$. Then $\left\|\chi_{E}-f\right\|_{p} \leq \mu(U \backslash K)^{1 / p}<\varepsilon^{1 / p}$.

3.7 Linear functionals

Recall that in Section 2.24 we had discussed linear functionals on the space $C_{c}(X)$ of continuous compactly supported functions. Linear functionals can of course be defined over arbitrary vector spaces.

Definition 3.26. Let X be a vector space over \mathbb{C}.
(i) We say that a map $\phi: X \rightarrow \mathbb{C}$ is a linear functional on X if $\phi(x+y)=\phi(x)+\phi(y)$ and $\phi(\alpha x)=\alpha \phi(x)$ for $\alpha \in \mathbb{C}$.
(ii) The space of all linear functionals on X forms a vector space which is called the algebraic dual space of X.

Remark 3.27. If X is equipped with a partial order \leq that is compatible with the vector addition and scalar multiplication (in the natural way you'd expect), then we call a functional positive if $x \geq 0$ implies $\phi(x) \geq 0$. We encountered this in Section 2.24 in the special case when X was the (partially ordered) space of continuous compactly supported functions.
Definition 3.28. Now let X be a Banach space with norm $\|\cdot\|$.
(i) We say that a linear functional ϕ is bounded (or continuous) if there is $C>0$ such that $|\phi(x)| \leq C\|x\|$ for all $x \in X$.
(ii) The space of all bounded linear functionals on X forms a vector space which is called the dual space of X, denoted by X^{*}.

Remarks 3.29. (a) Some authors may call X^{*} the continuous dual space or topological dual space. We will just call it dual.
(b) Clearly, X^{*}, the dual space of X, is a subspace of the algebraic dual space of X.
(c) If X is a Banach space, then X^{*} is easily seen to be a normed space with the norm defined by

$$
\|\phi\|=\sup \{|\phi(x)|: x \in X,\|x\| \leq 1\}=\sup \left\{\frac{|\phi(x)|}{\|x\|}: x \in X, x \neq 0\right\}
$$

In fact, it is not much work to show that X^{*} is complete, i.e., a Banach space.
(d) A rough way to state the Remark 2.76(c) (which is also referred to as a Riesz-Markov representation theorem) is to say that the dual $C_{0}(X)^{*}$ of $C_{0}(X)$ (space of continuous functions vanishing at infinity, the completion of $C_{c}(X)$) is the space of all (complex, in particular finite) regular Borel measures on X.

3.8 Duals of L^{p}

Intuition. Given $g \in L^{q}(\mu)(1 \leq q \leq \infty)$, according to Hölder's inequality, the map $f \mapsto \int f g d \mu$ is a bounded linear functional on $L^{p}(\mu)$. Does every bounded linear functional on L^{p} arise in this way? The answer is yes for $1 \leq p<\infty$ (at least if μ is σ-finite), but not for $p=\infty$.

Theorem 3.30. Suppose $1 \leq p<\infty$ and μ is a σ-finite (positive) measure. Then for any bounded linear functional ϕ on $L^{p}(\mu)$ there is a unique $g \in L^{q}(\mu)$ (where $\frac{1}{p}+\frac{1}{q}=1$) such that

$$
\begin{equation*}
\phi(f)=\int f g d \mu, \quad \text { for all } f \in L^{p}(\mu) \tag{3.8.1}
\end{equation*}
$$

Moreover, $\|\phi\|=\|g\|_{q}$.
Remarks 3.31. (a) Morally, one can say that $\left(L^{p}\right)^{*}=L^{q}$ if $1 \leq p<\infty$ and μ is σ-finite.
(b) The statement of the theorem is still correct without the σ-finiteness assumption provided that $1<$ $p<\infty$.
(c) In particular, $\left(L^{p}\right)^{* *}=L^{p}$ for $1<p<\infty$. Spaces satisfying such condition are called reflexive.
(d) The statement for $p=\infty$ fails. Indeed, $\left(L^{\infty}\right)^{*}$ is much bigger than L^{1}.

Proof. Uniqueness: if g and \tilde{g} both satisfy (3.8.1) then we can take $f=\chi_{E}$ for any measurable E with $\mu(E)<\infty$, giving $\int_{E}(g-\tilde{g}) d \mu=0$. This implies $g-\tilde{g}=0$ a.e. using σ-finiteness of μ.

We will suppose that $\mu(X)<\infty$ and leave the extension to the σ-finite case as an exercise ([F190]). Note that (3.8.1) for $f=\chi_{E}$ takes the form $\phi\left(\chi_{E}\right)=\int_{E} g d \mu$, which looks like a (complex) μ-absolutely continuous measure. This motivates us to define

$$
\nu(E)=\phi\left(\chi_{E}\right), \quad \text { for any } E \in \mathcal{M}
$$

We want to show that $\nu(E)=\int_{X} \chi_{E} g d \mu=\int_{E} g d \mu$ for some $g \in L^{q}$. To do this, we will show: (1) ν is a (complex) measure; (2) ν is μ-a.c.; (3) equality (3.8.1) holds with $g:=\frac{d \nu}{d \mu} \in L^{1}$; (4) g is in $L^{q}(\mu)$ and $\|g\|_{q}=\|\phi\|$.
(1) Finite-additiveness of ν follows from linearity of ϕ and $\chi_{A \cup B}=\chi_{A}+\chi_{B}$ for disjoint sets A and B. For σ-additivity, let $E_{\infty}=\coprod_{j=1}^{\infty} A_{j}$. Define $E_{n}=\coprod_{j=1}^{n} A_{j}$. We need to show $\nu\left(E_{\infty}\right)$ is equal to $\sum_{j=1}^{\infty} \nu\left(A_{j}\right) \equiv \lim \nu\left(E_{n}\right)$. We use continuity of ϕ to get $\left|\nu\left(E_{\infty}\right)-\nu\left(E_{n}\right)\right|=\left|\phi\left(\chi_{E_{\infty}}-\chi_{E_{n}}\right)\right| \leq C\left\|\chi_{E_{\infty}}-\chi_{E_{n}}\right\|_{p}$. Now note that $\left\|\chi_{E_{\infty}}-\chi_{E_{n}}\right\|_{p}=\left(\mu\left(E_{\infty} \backslash E_{n}\right)\right)^{1 / p} \rightarrow 0$ by continuity of μ. (recall that $\left.p<\infty\right)$.
(2) If $\mu(E)=0$, then $\chi_{E}(x)=0$ (μ-a.e.), so that $\left\|\chi_{E}\right\|_{p}=0$, which implies $\nu(E)=\phi\left(\chi_{E}\right)=0$ by linearity. Therefore $\nu \ll \mu$.
(3) By (2) and the Radon-Nikodym theorem, $d \nu=g d \mu$ for some $g \in L^{1}(\mu)$. In other words,

$$
\int_{E} d \nu=\phi_{\chi_{E}}=\int_{E} g d \mu=\int_{X} \chi_{E} g d \mu
$$

By linearity of integral and of ϕ, we get (3.8.1) for any f that is a simple function.
We can further extend (3.8.1) to $f \in L^{\infty}$: indeed, by Theorem 3.22, we can find simple functions $s_{n} \rightarrow f$ in $\|\cdot\|_{\infty}$-norm, which implies $s_{n} \rightarrow f$ in $\|\cdot\|_{p}$-norm since $\mu(X)<\infty$, and then we can take limits of both sides in (3.8.1) with s_{n}. We will get (3.8.1) with $f \in L^{p}(\mu)$ later; having $f \in L^{\infty}(\mu)$ will be sufficient for now.
(4) Suppose first that $1<p<\infty$ (so that $p \neq 1, q \neq \infty$). Then define $f=|g|^{q-1} \overline{\operatorname{sgn} g}$. Note that $|f|^{p}=|g|^{q}=f g$, so we expect from (3.8.1)

$$
\int_{X}|g|^{q} d \mu=\int f g d \mu=\phi(f) \leq\|\phi\|\|f\|_{p}=\|\phi\|\left(\int_{X}|g|^{q} d \mu\right)^{1 / p}
$$

but we cannot plug f into (3.8.1) since we don't have $f \in L^{\infty}$. To fix this, let $f_{n}=|g|^{q-1} \overline{\operatorname{sgn} g} \chi_{E_{n}}$ where $E_{n}=\{x:|g(x)| \leq n\}$. Then $\left|f_{n}\right|^{p}=|g|^{q}=f g$ on $E_{n}, f_{n} \in L^{\infty}$, and we get

$$
\int_{E_{n}}|g|^{q} d \mu=\int_{X} f_{n} g d \mu=\phi\left(f_{n}\right) \leq\|\phi\|\left\|f_{n}\right\|_{p}=\|\phi\|\left(\int_{E_{n}}|g|^{q} d \mu\right)^{1 / p}
$$

which implies $\left(\int \chi_{E_{n}}|g|^{q} d \mu\right)^{1 / q} \leq\|\phi\|$. Applying Monotone Convergence Theorem, we get $g \in L^{q}$ and $\|g\|_{q} \leq\|\phi\|$. This allows us to extend (3.8.1) to $f \in L^{p}(\mu)$ in the exact same way as before: for any $f \in L^{p}$, take simple functions $s_{n} \rightarrow f$ in $\|\cdot\|_{p}$-norm, and then take limits of both sides of (3.8.1). Because $g \in L^{q}$, this works now. Finally, having (3.8.1) for all $f \in L^{p}$ allows us to use Hölder's inequality to conclude $\|\phi\| \leq\|g\|_{q}$, so we get $\|\phi\|=\|g\|_{q}$.

Now let $p=1, q=\infty$. Take any $M<\|g\|_{\infty}$, and let $A=\{x:|g(x)|>M\}$. Note that $0<\mu(A)<\infty$, and we can take $f=\chi_{A} \overline{\operatorname{sgn} g}$. Since $f \in L^{\infty}$, (3.8.1) can be applied to get

$$
M \mu(A) \leq \int_{A}|g| d \mu=\int_{X} f g d \mu=\phi(f) \leq\|\phi\|\|f\|_{1}=\|\phi\| \mu(A) .
$$

so we proved that $M<\|g\|_{\infty}$ implies $M \leq\|\phi\|$. This proves that $\|g\|_{\infty} \leq\|\phi\|$ and in particular $g \in L^{\infty}$. This allows to extend (3.8.1) to all $f \in L^{1}$, and then use Hölder's inequality to conclude $\|\phi\| \leq\|g\|_{\infty}$, so that $\|\phi\|=\|g\|_{q}$.

3.9 Riesz Representation Theorem

Intuition. The duality theorem from the previous section states in particular that $\left(L^{2}\right)^{*}=L^{2}$, or more precisely, every bounded linear functional on $L^{2}(\mu)$ has the form

$$
\begin{equation*}
\phi(f)=\int f g d \mu, \quad \text { for all } f \in L^{2}(\mu) \tag{3.9.1}
\end{equation*}
$$

for some $g \in L^{2}$. The last expression can also be written as $\phi(f)=\langle f, \bar{g}\rangle$. This is the special case $H=L^{2}(\mu)$ of the Riesz Representation Theorem which holds for an arbitrary Hilbert space H.

Theorem 3.32 (Riesz Representation Theorem). Let H be a Hilbert space. For any $g \in H$, define

$$
\begin{equation*}
\phi_{g}(f)=\langle f, g\rangle, \quad \text { for any } f \in H \tag{3.9.2}
\end{equation*}
$$

Then $\phi_{g} \in H^{*}$, and conversely, every bounded linear functional on H has the form ϕ_{g} for a unique $g \in H$.

Proof. [F187]

The uniqueness of g : if $\langle f, g\rangle=\langle f, \tilde{g}\rangle$ for all $f \in H$. then taking $f=g-\tilde{g}$, we get $\|g-\tilde{g}\|=0$, i.e., $g=\tilde{g}$.
Now for existence, if ϕ is a bounded linear functional on H, then either $\phi \equiv 0$ (in which case we take $g=0$), or otherwise, let $K=\operatorname{ker} \phi=\{f \in H: \phi(f)=0\}$. Note that in order for (3.9.2) to hold, we must have $g \in K^{\perp}$. Choose any $z \in K^{\perp}\left(K\right.$ is a closed proper subspace in H, so $\left.K^{\perp} \neq\{0\}\right)$. Then for arbitrary $f, \phi(f) z-\phi(z) f$ is in K, so

$$
0=\langle\phi(f) z-\phi(z) f, z\rangle=\phi(f)\|z\|^{2}-\phi(z)\langle f, z\rangle .
$$

Rearranging we get

$$
\phi(f)=\left\langle f, \frac{\overline{\phi(z)} z}{\|z\|^{2}}\right\rangle,
$$

so we can take $q=\frac{\overline{\phi(z)} z}{\|z\|^{2}}$.

3.10 Linear operators: definition

Definition 3.33. Let X and Y be normed spaces.
(i) We say that a function $T: X \rightarrow Y$ is a bounded linear operator if T is linear and there exists $C>0$ such that $\|T(x)\|_{Y} \leq C\|x\|_{X}$ for all $x \in X$.
(ii) The operator norm $\|T\|$ of a bounded linear operator T is defined to be the smallest such constant C, or, in other words:

$$
\|T\|=\sup \left\{\|T(x)\|_{Y}: x \in X,\|x\|_{X} \leq 1\right\}=\sup \left\{\frac{\|T(x)\|_{Y}}{\|x\|_{X}}: x \in X, x \neq 0\right\}
$$

(iii) The space of all bounded linear operators from X to Y is denoted by $L(X, Y)$.

Remarks 3.34. 1. In particular, $L(X, \mathbb{C})=X^{*}$.
2. It can be shown that if Y is Banach, then $L(X, Y)$ with the operator norm is also a Banach space.

3.11 Riesz-Thorin Interpolation Theorem

Theorem 3.35 (Riesz-Thorin Interpolation Theorem). Suppose (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) are two (σ-finite) measure spaces, and let $p_{0}, p_{1}, q_{0}, q_{1} \in[1, \infty]$. For each $0<t<1$, let p_{t}, q_{t} be defined through

$$
\frac{1}{p_{t}}=\frac{1-t}{p_{0}}+\frac{t}{p_{1}}, \quad \frac{1}{q_{t}}=\frac{1-t}{q_{0}}+\frac{t}{q_{1}} .
$$

Let $T: L^{p_{0}}(\mu)+L^{p_{1}}(\mu) \rightarrow L^{q_{0}}(\nu)+L^{q_{1}}(\nu)$ be linear and satisfy

$$
\begin{aligned}
& \|T(f)\|_{q_{0}} \leq M_{0}\|f\|_{p_{0}} \\
& \|T(f)\|_{q_{1}} \leq M_{1}\|f\|_{p_{1}}
\end{aligned}
$$

Then for any $0 \leq t \leq 1, T$ is a bounded linear operator from $L^{p_{t}}(\mu)$ to $L^{q_{t}}(\nu)$ and $\|T(f)\| q_{q_{t}} \leq M_{0}^{1-t} M_{1}^{t}\|f\|_{p_{t}}$. Proof. This is mostly complex analysis and will be skipped, see [F200-202] if interested.

